On the basis property of an trigonometric functions system of the Frankl problem with a nonlocal parity condition of the first kind in the Sobolev space `overline(W)_p^(2l) (0,pi)`

N. Abbasi, E. Moiseev
{"title":"On the basis property of an trigonometric functions system of the Frankl problem with a nonlocal parity condition of the first kind in the Sobolev space `overline(W)_p^(2l) (0,pi)`","authors":"N. Abbasi, E. Moiseev","doi":"10.29252/maco.1.1.5","DOIUrl":null,"url":null,"abstract":"In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the  completeness,  the basis  property,  and the minimality of the eigenfunctions  in the space `overline(W)_p^(2l) (0,pi)`,  where  `overline(W)_p^(2l) (0,pi)` be the set of functions `f in  W_p^(2l) (0,pi)`, satisfying of the following conditions: `f^{(2k-1)}(0)=0, k=1,2,...,l`.","PeriodicalId":360771,"journal":{"name":"Mathematical Analysis and Convex Optimization","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Analysis and Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/maco.1.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the  completeness,  the basis  property,  and the minimality of the eigenfunctions  in the space `overline(W)_p^(2l) (0,pi)`,  where  `overline(W)_p^(2l) (0,pi)` be the set of functions `f in  W_p^(2l) (0,pi)`, satisfying of the following conditions: `f^{(2k-1)}(0)=0, k=1,2,...,l`.
Sobolev空间中具有第一类非局部宇称条件的Frankl问题的三角函数系统的基本性质' overline(W)_p^(2l) (0,pi) '
本文给出了具有第一类非局部奇偶性条件的修正Frankl问题的特征值和相应的特征函数。我们分析了空间' overline(W)_p^(2l) (0,pi) '中特征函数的完备性、基性质和极小性,其中' overline(W)_p^(2l) (0,pi) '是W_p^(2l) (0,pi) '中函数' f的集合,满足以下条件:' f^{(2k-1)}(0)=0, k=1,2,…,l '。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信