Supriyadi Amir, Sitti Nur Azizah Fitriani Akbar, H. Hendra, Andi Muhammad Anwar, Sulfayanti Sulfayanti
{"title":"Deteksi Citra X-Ray Paru-Paru Terinfeksi COVID-19 dengan Algoritma CNN berbasis Aplikasi Web","authors":"Supriyadi Amir, Sitti Nur Azizah Fitriani Akbar, H. Hendra, Andi Muhammad Anwar, Sulfayanti Sulfayanti","doi":"10.30872/jim.v17i1.6534","DOIUrl":null,"url":null,"abstract":"Pada penelitian ini menggunakan algoritma Convolutional Neural Network (CNN) untuk mendeteksi COVID-19 berdasarkan citra X-ray Paru-paru. Arsitektur CNN yang digunakan adalah EfficientNetB7 dan Resnet152V2 dengan memanfaatkan teknik Transfer Learning. Penelitian ini berfokus pada membandingkan kinerja kedua model arsitektur dalam mengklasifikasikan citra X-ray Paru-paru terinfeksi COVID-19. Selanjutnya mengimplementasikan model CNN tersebut ke aplikasi deteksi Citra X-ray paru-paru berbasis web. Dari hasil evaluasi kedua model tersebut disimpulkan bahwa Resnet152-V2 mencapai kinerja lebih baik dibanding arsitektur CNN EfficientNetB7 dengan akurasi 97% sedangkan EfficientNetB7 dengan akurasi 95%.","PeriodicalId":149284,"journal":{"name":"Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/jim.v17i1.6534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pada penelitian ini menggunakan algoritma Convolutional Neural Network (CNN) untuk mendeteksi COVID-19 berdasarkan citra X-ray Paru-paru. Arsitektur CNN yang digunakan adalah EfficientNetB7 dan Resnet152V2 dengan memanfaatkan teknik Transfer Learning. Penelitian ini berfokus pada membandingkan kinerja kedua model arsitektur dalam mengklasifikasikan citra X-ray Paru-paru terinfeksi COVID-19. Selanjutnya mengimplementasikan model CNN tersebut ke aplikasi deteksi Citra X-ray paru-paru berbasis web. Dari hasil evaluasi kedua model tersebut disimpulkan bahwa Resnet152-V2 mencapai kinerja lebih baik dibanding arsitektur CNN EfficientNetB7 dengan akurasi 97% sedangkan EfficientNetB7 dengan akurasi 95%.