On the Kronecker Product of Matrices and Their Applications To Linear Systems Via Modified QR-Algorithm

N. V. Lakshmi, Jajula Madhu, Musa Dileep Durani
{"title":"On the Kronecker Product of Matrices and Their Applications To Linear Systems Via Modified QR-Algorithm","authors":"N. V. Lakshmi, Jajula Madhu, Musa Dileep Durani","doi":"10.18535/ijecs/v10i6.4600","DOIUrl":null,"url":null,"abstract":"This paper studies and supplements the proofs of the properties of the Kronecker Product of two matrices of different orders. We observe the relation between the singular value decomposition of the matrices and their Kronecker product and the relationship between the determinant, the trace, the rank and the polynomial matrix of the Kronecker products.  We also establish the best least square solutions of the Kronecker product system of equations by using modified QR-algorithm.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v10i6.4600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies and supplements the proofs of the properties of the Kronecker Product of two matrices of different orders. We observe the relation between the singular value decomposition of the matrices and their Kronecker product and the relationship between the determinant, the trace, the rank and the polynomial matrix of the Kronecker products.  We also establish the best least square solutions of the Kronecker product system of equations by using modified QR-algorithm.
基于改进qr算法的矩阵的Kronecker积及其在线性系统中的应用
本文研究并补充了两个不同阶矩阵的克罗内克积性质的证明。我们观察了矩阵的奇异值分解与其Kronecker积的关系,以及Kronecker积的行列式、迹、秩与多项式矩阵的关系。利用改进的qr算法建立了Kronecker积方程组的最佳最小二乘解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信