An efficient over sampled approach for handling imbalanced data using diversified distribution

G. Shobana, B. Battula
{"title":"An efficient over sampled approach for handling imbalanced data using diversified distribution","authors":"G. Shobana, B. Battula","doi":"10.1109/ICICI.2017.8365232","DOIUrl":null,"url":null,"abstract":"Data mining is the process of finding unknown relations from the databases. In Data mining, classification is the branch of learning which deals with the labeled instances. The existing classification algorithms are not efficient on imbalance datasets. In this paper, we propose a novel algorithm known as Over Sampling using Diversified Distribution (OSDD), to overcome the problem of class imbalance learning. The OSDD algorithm identifies the unique diversified distributions for efficient oversampling. The experimental results suggest that the proposed approach performs better than the compared approach in terms of AUC, precision, recall and f-measure.","PeriodicalId":369524,"journal":{"name":"2017 International Conference on Inventive Computing and Informatics (ICICI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Inventive Computing and Informatics (ICICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI.2017.8365232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data mining is the process of finding unknown relations from the databases. In Data mining, classification is the branch of learning which deals with the labeled instances. The existing classification algorithms are not efficient on imbalance datasets. In this paper, we propose a novel algorithm known as Over Sampling using Diversified Distribution (OSDD), to overcome the problem of class imbalance learning. The OSDD algorithm identifies the unique diversified distributions for efficient oversampling. The experimental results suggest that the proposed approach performs better than the compared approach in terms of AUC, precision, recall and f-measure.
一种利用多样化分布处理不平衡数据的有效过采样方法
数据挖掘是从数据库中发现未知关系的过程。在数据挖掘中,分类是处理标记实例的学习分支。现有的分类算法对不平衡数据集的分类效率不高。在本文中,我们提出了一种新的算法,称为使用多样化分布的过采样(OSDD),以克服类不平衡学习的问题。OSDD算法识别唯一的多样化分布,以实现有效的过采样。实验结果表明,该方法在AUC、precision、recall和f-measure等方面都优于对比方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信