DPD-InfoGAN: Differentially Private Distributed InfoGAN

Vaikkunth Mugunthan, V. Gokul, Lalana Kagal, S. Dubnov
{"title":"DPD-InfoGAN: Differentially Private Distributed InfoGAN","authors":"Vaikkunth Mugunthan, V. Gokul, Lalana Kagal, S. Dubnov","doi":"10.1145/3437984.3458826","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) are deep learning architectures capable of generating synthetic datasets. Despite producing high-quality synthetic images, the default GAN has no control over the kinds of images it generates. The Information Maximizing GAN (InfoGAN) is a variant of the default GAN that introduces feature-control variables that are automatically learned by the framework, hence providing greater control over the different kinds of images produced. Due to the high model complexity of InfoGAN, the generative distribution tends to be concentrated around the training data points. This is a critical problem as the models may inadvertently expose the sensitive and private information present in the dataset. To address this problem, we propose a differentially private version of InfoGAN (DP-InfoGAN). We also extend our framework to a distributed setting (DPD-InfoGAN) to allow clients to learn different attributes present in other clients' datasets in a privacy-preserving manner. In our experiments, we show that both DP-InfoGAN and DPD-InfoGAN can synthesize high-quality images with flexible control over image attributes while preserving privacy.","PeriodicalId":269840,"journal":{"name":"Proceedings of the 1st Workshop on Machine Learning and Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437984.3458826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Generative Adversarial Networks (GANs) are deep learning architectures capable of generating synthetic datasets. Despite producing high-quality synthetic images, the default GAN has no control over the kinds of images it generates. The Information Maximizing GAN (InfoGAN) is a variant of the default GAN that introduces feature-control variables that are automatically learned by the framework, hence providing greater control over the different kinds of images produced. Due to the high model complexity of InfoGAN, the generative distribution tends to be concentrated around the training data points. This is a critical problem as the models may inadvertently expose the sensitive and private information present in the dataset. To address this problem, we propose a differentially private version of InfoGAN (DP-InfoGAN). We also extend our framework to a distributed setting (DPD-InfoGAN) to allow clients to learn different attributes present in other clients' datasets in a privacy-preserving manner. In our experiments, we show that both DP-InfoGAN and DPD-InfoGAN can synthesize high-quality images with flexible control over image attributes while preserving privacy.
DPD-InfoGAN:差分私有分布式信息网络
生成对抗网络(gan)是一种能够生成合成数据集的深度学习架构。尽管生成了高质量的合成图像,但默认GAN无法控制其生成的图像类型。信息最大化GAN (InfoGAN)是默认GAN的一种变体,它引入了由框架自动学习的特性控制变量,从而对生成的不同类型的图像提供更好的控制。由于InfoGAN的高模型复杂度,生成分布倾向于集中在训练数据点周围。这是一个关键问题,因为模型可能会无意中暴露数据集中存在的敏感和私有信息。为了解决这个问题,我们提出了一个不同的私有版本的InfoGAN (DP-InfoGAN)。我们还将我们的框架扩展到分布式设置(DPD-InfoGAN),以允许客户端以保护隐私的方式学习其他客户端数据集中存在的不同属性。实验表明,DP-InfoGAN和DPD-InfoGAN都可以合成高质量的图像,对图像属性进行灵活的控制,同时保护隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信