{"title":"CityResolver: A Decision Support System for Conflict Resolution in Smart Cities","authors":"Meiyi Ma, J. Stankovic, Lu Feng","doi":"10.1109/ICCPS.2018.00014","DOIUrl":null,"url":null,"abstract":"Resolution of conflicts across services in smart cities is an important yet challenging problem. We present CityResolver – a decision support system for conflict resolution in smart cities. CityResolver uses an Integer Linear Programming based method to generate a small set of resolution options, and a Signal Temporal Logic based verification approach to compute these resolution options' impact on city performance. The trade-offs between resolution options are shown in a dashboard to support decision makers in selecting the best resolution. We demonstrate the effectiveness of CityResolver by comparing the performance with two baselines: a smart city without conflict resolution, and CityGuard which uses a priority rule-based conflict resolution. Experimental results show that CityResolver can reduce the number of requirement violations and improve the city performance significantly.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Resolution of conflicts across services in smart cities is an important yet challenging problem. We present CityResolver – a decision support system for conflict resolution in smart cities. CityResolver uses an Integer Linear Programming based method to generate a small set of resolution options, and a Signal Temporal Logic based verification approach to compute these resolution options' impact on city performance. The trade-offs between resolution options are shown in a dashboard to support decision makers in selecting the best resolution. We demonstrate the effectiveness of CityResolver by comparing the performance with two baselines: a smart city without conflict resolution, and CityGuard which uses a priority rule-based conflict resolution. Experimental results show that CityResolver can reduce the number of requirement violations and improve the city performance significantly.