Tag Recommendation for Cultural Resources

Zhiwen Lei, Yi Yang, Weixing Huang, Jian Wang
{"title":"Tag Recommendation for Cultural Resources","authors":"Zhiwen Lei, Yi Yang, Weixing Huang, Jian Wang","doi":"10.1109/QRS-C.2018.00100","DOIUrl":null,"url":null,"abstract":"We propose a new tag recommendation method for the public digit cultural resources we collected in related program. We use LDA and Word2Vec to preprocess the resource and tag, map them to different vector space respectively. After that, we calculate the relevance of each resource and all tags by using Deep Structured Semantic Model. Lastly, range the result of calculation and treat the top N tags as the extended tags of a resource. Result show the good performance of our tag recommendation method.","PeriodicalId":199384,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C.2018.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new tag recommendation method for the public digit cultural resources we collected in related program. We use LDA and Word2Vec to preprocess the resource and tag, map them to different vector space respectively. After that, we calculate the relevance of each resource and all tags by using Deep Structured Semantic Model. Lastly, range the result of calculation and treat the top N tags as the extended tags of a resource. Result show the good performance of our tag recommendation method.
文化资源标签推荐
针对相关项目中收集到的公众号文化资源,提出了一种新的标签推荐方法。我们使用LDA和Word2Vec对资源和标签进行预处理,分别映射到不同的向量空间。然后,我们使用深度结构化语义模型计算每个资源和所有标签的相关性。最后,对计算结果进行取值,将前N个标签作为资源的扩展标签。结果表明,本文提出的标签推荐方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信