Tian Huat Tan, Yinxing Xue, Manman Chen, Jun Sun, Yang Liu, J. Dong
{"title":"Optimizing selection of competing features via feedback-directed evolutionary algorithms","authors":"Tian Huat Tan, Yinxing Xue, Manman Chen, Jun Sun, Yang Liu, J. Dong","doi":"10.1145/2771783.2771808","DOIUrl":null,"url":null,"abstract":"Software that support various groups of customers usually require complicated configurations to attain different functionalities. To model the configuration options, feature model is proposed to capture the commonalities and competing variabilities of the product variants in software family or Software Product Line (SPL). A key challenge for deriving a new product is to find a set of features that do not have inconsistencies or conflicts, yet optimize multiple objectives (e.g., minimizing cost and maximizing number of features), which are often competing with each other. Existing works have attempted to make use of evolutionary algorithms (EAs) to address this problem. In this work, we incorporated a novel feedback-directed mechanism into existing EAs. Our empirical results have shown that our method has improved noticeably over all unguided version of EAs on the optimal feature selection. In particular, for case studies in SPLOT and LVAT repositories, the feedback-directed Indicator-Based EA (IBEA) has increased the number of correct solutions found by 72.33% and 75%, compared to unguided IBEA. In addition, by leveraging a pre-computed solution, we have found 34 sound solutions for Linux X86, which contains 6888 features, in less than 40 seconds.","PeriodicalId":264859,"journal":{"name":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771783.2771808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Software that support various groups of customers usually require complicated configurations to attain different functionalities. To model the configuration options, feature model is proposed to capture the commonalities and competing variabilities of the product variants in software family or Software Product Line (SPL). A key challenge for deriving a new product is to find a set of features that do not have inconsistencies or conflicts, yet optimize multiple objectives (e.g., minimizing cost and maximizing number of features), which are often competing with each other. Existing works have attempted to make use of evolutionary algorithms (EAs) to address this problem. In this work, we incorporated a novel feedback-directed mechanism into existing EAs. Our empirical results have shown that our method has improved noticeably over all unguided version of EAs on the optimal feature selection. In particular, for case studies in SPLOT and LVAT repositories, the feedback-directed Indicator-Based EA (IBEA) has increased the number of correct solutions found by 72.33% and 75%, compared to unguided IBEA. In addition, by leveraging a pre-computed solution, we have found 34 sound solutions for Linux X86, which contains 6888 features, in less than 40 seconds.