Lossless Compression of Light Fields Using Multi-reference Minimum Rate Predictors

João M. Santos, P. Assunção, L. Cruz, Luis M. N. Tavora, R. Fonseca-Pinto, S. Faria
{"title":"Lossless Compression of Light Fields Using Multi-reference Minimum Rate Predictors","authors":"João M. Santos, P. Assunção, L. Cruz, Luis M. N. Tavora, R. Fonseca-Pinto, S. Faria","doi":"10.1109/DCC.2019.00049","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the lossless compression efficiency of light field encoding based on Minimum Rate Predictors (MRP). The proposed method relies on the use of multiple references, either micro-images or sub-aperture images, to provide a richer set of correlated pixels for prediction. The results show better compression ratios than conventional versions of MRP, for both representation formats (micro-image and sub-aperture image arrays), achieving gains ranging from 16.9% to 21.2%. Furthermore, it is also shown that the proposed method consistently outperforms the state-of-the-art lossless encoders HEVC and JPEG-LS.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a method to improve the lossless compression efficiency of light field encoding based on Minimum Rate Predictors (MRP). The proposed method relies on the use of multiple references, either micro-images or sub-aperture images, to provide a richer set of correlated pixels for prediction. The results show better compression ratios than conventional versions of MRP, for both representation formats (micro-image and sub-aperture image arrays), achieving gains ranging from 16.9% to 21.2%. Furthermore, it is also shown that the proposed method consistently outperforms the state-of-the-art lossless encoders HEVC and JPEG-LS.
使用多参考最小速率预测器的光场无损压缩
提出了一种提高光场编码无损压缩效率的最小率预测器(MRP)方法。该方法依赖于使用多个参考,无论是微图像还是子孔径图像,为预测提供更丰富的相关像素集。结果表明,对于两种表示格式(微图像和子孔径图像阵列),MRP的压缩比都优于传统版本,其压缩率在16.9%至21.2%之间。此外,还表明所提出的方法始终优于最先进的无损编码器HEVC和JPEG-LS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信