Evaluation Framework for Search Methods Focused on Dataset Findability in Open Data Catalogs

P. Škoda, D. Bernhauer, M. Nečaský, Jakub Klímek, T. Skopal
{"title":"Evaluation Framework for Search Methods Focused on Dataset Findability in Open Data Catalogs","authors":"P. Škoda, D. Bernhauer, M. Nečaský, Jakub Klímek, T. Skopal","doi":"10.1145/3428757.3429973","DOIUrl":null,"url":null,"abstract":"Many institutions publish datasets as Open Data in catalogs, however, their retrieval remains problematic issue due to the absence of dataset search benchmarking. We propose a framework for evaluating findability of datasets, regardless of retrieval models used. As task-agnostic labeling of datasets by ground truth turns out to be infeasible in the general domain of open data datasets, the proposed framework is based on evaluation of entire retrieval scenarios that mimic complex retrieval tasks. In addition to the framework we present a proof of concept specification and evaluation on several similarity-based retrieval models and several dataset discovery scenarios within a catalog, using our experimental evaluation tool. Instead of traditional matching of query with metadata of all the datasets, in similarity-based retrieval the query is formulated using a set of datasets (query by example) and the most similar datasets to the query set are retrieved from the catalog as a result.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many institutions publish datasets as Open Data in catalogs, however, their retrieval remains problematic issue due to the absence of dataset search benchmarking. We propose a framework for evaluating findability of datasets, regardless of retrieval models used. As task-agnostic labeling of datasets by ground truth turns out to be infeasible in the general domain of open data datasets, the proposed framework is based on evaluation of entire retrieval scenarios that mimic complex retrieval tasks. In addition to the framework we present a proof of concept specification and evaluation on several similarity-based retrieval models and several dataset discovery scenarios within a catalog, using our experimental evaluation tool. Instead of traditional matching of query with metadata of all the datasets, in similarity-based retrieval the query is formulated using a set of datasets (query by example) and the most similar datasets to the query set are retrieved from the catalog as a result.
面向开放数据目录中数据集可寻性的搜索方法评估框架
许多机构将数据集作为开放数据在目录中发布,然而,由于缺乏数据集搜索基准,它们的检索仍然存在问题。我们提出了一个框架来评估数据集的可查找性,而不考虑使用的检索模型。由于在开放数据集的一般领域中,通过真实值对数据集进行任务无关的标记是不可行的,因此所提出的框架基于模拟复杂检索任务的整个检索场景的评估。除了框架之外,我们还使用我们的实验评估工具,对目录中的几个基于相似性的检索模型和几个数据集发现场景提出了概念规范和评估的证明。与传统的查询与所有数据集的元数据匹配不同,在基于相似性的检索中,查询是使用一组数据集(按示例查询)来制定的,结果是从目录中检索与查询集最相似的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信