Two variants of HJLS-PSLQ with applications

Yong Feng, Jingwei Chen, Wenyuan Wu
{"title":"Two variants of HJLS-PSLQ with applications","authors":"Yong Feng, Jingwei Chen, Wenyuan Wu","doi":"10.1145/2631948.2631965","DOIUrl":null,"url":null,"abstract":"The HJLS and PSLQ algorithms are the most popular algorithms for finding nontrivial integer relations for several real numbers. It has been already shown that PSLQ is essentially equivalent to HJLS under certain settings. We here call them HJLS-PSLQ.\n In the present work, we provide two variants of HJLS-PSLQ. The first one is a new modification of Bailey and Broadhurst's multi-pair version. We prove the termination of our modification, while the original multi-pair version may not terminate. The second one is an incremental version of HJLS-PSLQ. For those applications requiring to call HJLS-PSLQ many times, such as finding the minimal polynomial of an algebraic number without knowing the degree, we show the incremental version is more efficient than HJLS-PSLQ, both theoretically and practically.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The HJLS and PSLQ algorithms are the most popular algorithms for finding nontrivial integer relations for several real numbers. It has been already shown that PSLQ is essentially equivalent to HJLS under certain settings. We here call them HJLS-PSLQ. In the present work, we provide two variants of HJLS-PSLQ. The first one is a new modification of Bailey and Broadhurst's multi-pair version. We prove the termination of our modification, while the original multi-pair version may not terminate. The second one is an incremental version of HJLS-PSLQ. For those applications requiring to call HJLS-PSLQ many times, such as finding the minimal polynomial of an algebraic number without knowing the degree, we show the incremental version is more efficient than HJLS-PSLQ, both theoretically and practically.
带应用程序的HJLS-PSLQ的两个变体
HJLS算法和PSLQ算法是求若干实数的非平凡整数关系最常用的算法。已经表明,在某些设置下,PSLQ本质上等同于HJLS。我们称之为HJLS-PSLQ。在本工作中,我们提供了两种变体的HJLS-PSLQ。第一个是贝利和布罗德赫斯特的多对版本的新修改。我们证明我们的修改终止,而原来的多对版本可能不会终止。第二个是HJLS-PSLQ的增量版本。对于那些需要多次调用HJLS-PSLQ的应用程序,例如在不知道阶数的情况下查找代数数的最小多项式,我们证明了增量版本在理论和实践上都比HJLS-PSLQ更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信