Comparison of CART-based localization and SVMs-based localization in WSN

W. Zhou, Chunhua Liu, Hongbing Liu
{"title":"Comparison of CART-based localization and SVMs-based localization in WSN","authors":"W. Zhou, Chunhua Liu, Hongbing Liu","doi":"10.1109/ICNC.2012.6234509","DOIUrl":null,"url":null,"abstract":"Localization of sensor nodes is essential for wireless sensor network when it is applied to the special applications. We formed two models to estimate the location of sensor nodes, CART-based localization and SVMs-based Localization. During the training process, the received signal strength of the reference nodes is selected as the input of two models and the location information is regarded as the output of two models. During the localization process, the decision trees of CART and support vector machines are used to estimate the location of blindfolded nodes. We demonstrate the practicality and feasibility of the two models through simulations in the 100m×100m area.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Localization of sensor nodes is essential for wireless sensor network when it is applied to the special applications. We formed two models to estimate the location of sensor nodes, CART-based localization and SVMs-based Localization. During the training process, the received signal strength of the reference nodes is selected as the input of two models and the location information is regarded as the output of two models. During the localization process, the decision trees of CART and support vector machines are used to estimate the location of blindfolded nodes. We demonstrate the practicality and feasibility of the two models through simulations in the 100m×100m area.
基于cart的WSN定位与基于svm的WSN定位比较
无线传感器网络应用于特殊场合时,传感器节点的定位至关重要。我们建立了两种模型来估计传感器节点的位置,基于cart的定位和基于svm的定位。在训练过程中,选取参考节点的接收信号强度作为两个模型的输入,将位置信息作为两个模型的输出。在定位过程中,利用CART的决策树和支持向量机来估计蒙眼节点的位置。通过100m×100m地区的仿真,验证了两种模型的实用性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信