Machine Learning for Vectorization Decision in OpenCL/SYCL Kernel

Wenju He, Yuxin Zou, Feng Zou
{"title":"Machine Learning for Vectorization Decision in OpenCL/SYCL Kernel","authors":"Wenju He, Yuxin Zou, Feng Zou","doi":"10.1145/3585341.3585364","DOIUrl":null,"url":null,"abstract":"Vectorization of OpenCL/SYCL kernel on CPU device could improve performance significantly. It utilizes single instruction multiple data (SIMD) instruction to process multiple work-items concurrently. However, some applications don't benefit from vectorization. Whether to do vectorization is a challenging problem, since it could vary from case to case. For OpenCL kernels, Intel SYCL CPU device currently uses heuristic to decide whether to discard vectorized kernel. This paper presents a machine learning approach to tackle this problem. Experimental result on Intel Xeon Cascade Lake CPU demonstrates the new approach is better than the heuristic approach.","PeriodicalId":360830,"journal":{"name":"Proceedings of the 2023 International Workshop on OpenCL","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585341.3585364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vectorization of OpenCL/SYCL kernel on CPU device could improve performance significantly. It utilizes single instruction multiple data (SIMD) instruction to process multiple work-items concurrently. However, some applications don't benefit from vectorization. Whether to do vectorization is a challenging problem, since it could vary from case to case. For OpenCL kernels, Intel SYCL CPU device currently uses heuristic to decide whether to discard vectorized kernel. This paper presents a machine learning approach to tackle this problem. Experimental result on Intel Xeon Cascade Lake CPU demonstrates the new approach is better than the heuristic approach.
OpenCL/SYCL内核中矢量化决策的机器学习
在CPU设备上对OpenCL/SYCL内核进行向量化可以显著提高性能。它利用单指令多数据(SIMD)指令并发处理多个工作项。然而,有些应用程序无法从向量化中获益。是否进行矢量化是一个具有挑战性的问题,因为它可能因情况而异。对于OpenCL内核,Intel SYCL CPU设备目前使用启发式方法来决定是否丢弃矢量化内核。本文提出了一种机器学习方法来解决这个问题。在Intel Xeon Cascade Lake CPU上的实验结果表明,该方法优于启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信