Design of 4D-8PSK-TCM with Hybrid T-Algorithm based on Deep Learning

Song Kim, Joan Adrià Ruiz De Azua, Hyuk Park, Jae-Hyun Kim
{"title":"Design of 4D-8PSK-TCM with Hybrid T-Algorithm based on Deep Learning","authors":"Song Kim, Joan Adrià Ruiz De Azua, Hyuk Park, Jae-Hyun Kim","doi":"10.1109/ICTC49870.2020.9289084","DOIUrl":null,"url":null,"abstract":"The consultative committee for space data system recommended the 4-dimension 8-ary phase shift keying trellis coded modulation (4D-8PSK-TCM). The 4D-8PSK-TCM has the advantage of low decoding latency over iterative error correction codes. The T-algorithm, which makes feasible to eliminate unnecessary additions and comparisons, can be applided to the 4D-8PSK-TCM to lower the decoding complexity. In this paper, we design the 4D-8PSK-TCM simulator with Hybrid T-algorithm based on deep learning to lower decoding complexity. The deep neural network predicts threshold of branch metric and path metric. Simulation results validate that the designed 4D-8PSK-TCM has lower complexity than the ideal 4D-8PSK-TCM while it maintain bit error rate performance of the ideal 4D-8PSK-TCM.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The consultative committee for space data system recommended the 4-dimension 8-ary phase shift keying trellis coded modulation (4D-8PSK-TCM). The 4D-8PSK-TCM has the advantage of low decoding latency over iterative error correction codes. The T-algorithm, which makes feasible to eliminate unnecessary additions and comparisons, can be applided to the 4D-8PSK-TCM to lower the decoding complexity. In this paper, we design the 4D-8PSK-TCM simulator with Hybrid T-algorithm based on deep learning to lower decoding complexity. The deep neural network predicts threshold of branch metric and path metric. Simulation results validate that the designed 4D-8PSK-TCM has lower complexity than the ideal 4D-8PSK-TCM while it maintain bit error rate performance of the ideal 4D-8PSK-TCM.
基于深度学习的混合t算法4D-8PSK-TCM设计
空间数据系统咨询委员会建议采用四维八轴相移键控栅格编码调制(4D-8PSK-TCM)。与迭代纠错码相比,4D-8PSK-TCM具有低解码延迟的优点。t算法可以消除不必要的添加和比较,可以应用于4D-8PSK-TCM,降低解码复杂度。本文采用基于深度学习的混合t算法设计4D-8PSK-TCM仿真器,降低译码复杂度。深度神经网络预测分支度量和路径度量的阈值。仿真结果验证了所设计的4D-8PSK-TCM在保持理想4D-8PSK-TCM误码率性能的同时,复杂度低于理想4D-8PSK-TCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信