Speaker information from subband energies of Linear Prediction residual

D. Pati, S. Prasanna
{"title":"Speaker information from subband energies of Linear Prediction residual","authors":"D. Pati, S. Prasanna","doi":"10.1109/NCC.2010.5430209","DOIUrl":null,"url":null,"abstract":"The objective of this work is to demonstrate the significant speaker information present in the subband energies of the Linear Prediction (LP) residual. The LP residual mostly contains the excitation source information. The subband energies extracted using the mel filterbank followed by cepstral analysis provides a compact representation. The resulting cepstral values are termed as Residual-mel Frequency Cepstral Coefficients (R-MFCC). The speaker identification studies conducted using R-MFCC as features and Gaussian mixture model (GMM) on a subset of 30 speakers from NIST-1999 provides 87% accuracy. The performance using MFCC extracted directly from speech provides 87% accuracy. Further, the combination of the two provides 90% accuracy indicating the different aspect of speaker information present in R-MFCC.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The objective of this work is to demonstrate the significant speaker information present in the subband energies of the Linear Prediction (LP) residual. The LP residual mostly contains the excitation source information. The subband energies extracted using the mel filterbank followed by cepstral analysis provides a compact representation. The resulting cepstral values are termed as Residual-mel Frequency Cepstral Coefficients (R-MFCC). The speaker identification studies conducted using R-MFCC as features and Gaussian mixture model (GMM) on a subset of 30 speakers from NIST-1999 provides 87% accuracy. The performance using MFCC extracted directly from speech provides 87% accuracy. Further, the combination of the two provides 90% accuracy indicating the different aspect of speaker information present in R-MFCC.
从子带能量中提取说话人信息的线性预测残差
这项工作的目的是证明在线性预测(LP)残差的子带能量中存在重要的说话人信息。低频残差主要包含激励源信息。使用mel滤波器组提取子带能量,然后进行倒谱分析,提供了一个紧凑的表示。由此产生的倒谱值称为残余频率倒谱系数(R-MFCC)。使用R-MFCC作为特征和高斯混合模型(GMM)在NIST-1999的30个说话人子集上进行的说话人识别研究提供了87%的准确率。使用直接从语音中提取的MFCC,准确率达到87%。此外,两者的结合提供了90%的准确率,表明R-MFCC中存在的说话人信息的不同方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信