{"title":"DC link voltage sensorless control of a three-phase boost power factor correction rectifier","authors":"Ayan Mallik, A. Khaligh","doi":"10.1109/ITEC.2016.7520281","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative and simple approach of controlling a three-phase boost-type rectifier without using an output DC link voltage sensor, whose information is one of the most importantly governing factor of stability and regulation of the converter. Though all the traditional PFC control techniques require the feedback signals from input voltage, input current and output voltage sensors to ensure the stability of the converter, reducing a DC voltage sensor is theoretically feasible and implementable without affecting stability of the system, as proposed in this manuscript. The proposed control method incorporates the prediction of the output voltage from the fluctuations of other state variables and preceding switching state information from converter dynamics. In order to validate and perform a proof-of-concept verification to the proposed control strategy, a 2 kW three-phase boost PFC prototype is designed and developed. The experimental results show that an input power factor of 0.995, a total harmonic distortion (THD) as low as 2.1%, a conversion efficiency of 97.8% and a tightly regulated DC link voltage with 1% ripple can be achieved.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"430 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents an innovative and simple approach of controlling a three-phase boost-type rectifier without using an output DC link voltage sensor, whose information is one of the most importantly governing factor of stability and regulation of the converter. Though all the traditional PFC control techniques require the feedback signals from input voltage, input current and output voltage sensors to ensure the stability of the converter, reducing a DC voltage sensor is theoretically feasible and implementable without affecting stability of the system, as proposed in this manuscript. The proposed control method incorporates the prediction of the output voltage from the fluctuations of other state variables and preceding switching state information from converter dynamics. In order to validate and perform a proof-of-concept verification to the proposed control strategy, a 2 kW three-phase boost PFC prototype is designed and developed. The experimental results show that an input power factor of 0.995, a total harmonic distortion (THD) as low as 2.1%, a conversion efficiency of 97.8% and a tightly regulated DC link voltage with 1% ripple can be achieved.