Cancer gene silencing network analysis using cellular automata

K. Mahata, Anasua Sarkar
{"title":"Cancer gene silencing network analysis using cellular automata","authors":"K. Mahata, Anasua Sarkar","doi":"10.1109/C3IT.2015.7060127","DOIUrl":null,"url":null,"abstract":"Identification of cancer pathways is the central goal in the cancer gene expression data analysis. A cellular automaton is a dynamic system with cells, which are uniform, interconnected and discrete in nature. Cellular automata are well-known methods to predict network traffics in cellular spaces. Therefore, to predict cancer pathways involved, we propose a 2-dimensional cellular automata approach over a chosen cancer gene network. Focusing on the case study, we highlight the potential impact of spatial organization in cellular spaces for the evolution and engineering of gene silencing on cancer gene expression profiles. The gene regulatory network involved in gene silencing breast cancer cell line, analysed with a predefined ranking value, has been simulated using cellular automata to obtain proper insight view of selecting biomarker genes for breast cancer. The predicted biomarker genes have been analysed with other contemporary databases, like KEGG and biologically tested for gene enrichment analysis for their significances. This approach is a novel one in the sense of projecting oncology in cellular spaces over ranking values for predicting significant biomarkers in cancer.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification of cancer pathways is the central goal in the cancer gene expression data analysis. A cellular automaton is a dynamic system with cells, which are uniform, interconnected and discrete in nature. Cellular automata are well-known methods to predict network traffics in cellular spaces. Therefore, to predict cancer pathways involved, we propose a 2-dimensional cellular automata approach over a chosen cancer gene network. Focusing on the case study, we highlight the potential impact of spatial organization in cellular spaces for the evolution and engineering of gene silencing on cancer gene expression profiles. The gene regulatory network involved in gene silencing breast cancer cell line, analysed with a predefined ranking value, has been simulated using cellular automata to obtain proper insight view of selecting biomarker genes for breast cancer. The predicted biomarker genes have been analysed with other contemporary databases, like KEGG and biologically tested for gene enrichment analysis for their significances. This approach is a novel one in the sense of projecting oncology in cellular spaces over ranking values for predicting significant biomarkers in cancer.
利用元胞自动机分析癌症基因沉默网络
识别癌症通路是癌症基因表达数据分析的中心目标。元胞自动机是一个由细胞组成的动态系统,这些细胞在本质上是均匀的、相互联系的和离散的。元胞自动机是众所周知的预测元胞空间网络流量的方法。因此,为了预测所涉及的癌症途径,我们提出了一种基于选定的癌症基因网络的二维细胞自动机方法。通过案例研究,我们强调了细胞空间中空间组织对癌症基因表达谱基因沉默的进化和工程的潜在影响。利用元胞自动机对参与基因沉默的乳腺癌细胞系的基因调控网络进行了模拟,并对其排序值进行了分析,以获得对乳腺癌生物标志物基因选择的正确见解。预测的生物标记基因已与其他当代数据库(如KEGG)进行了分析,并对其重要性进行了基因富集分析的生物学测试。这种方法是一种新颖的方法,在细胞空间中预测肿瘤,而不是预测癌症中重要生物标志物的排序值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信