BRAIN TUMOUR DETECTION USING SUPER PIXEL BASED SPECTRAL CLUSTERING

Kasamina, K. Anusudha
{"title":"BRAIN TUMOUR DETECTION USING SUPER PIXEL BASED SPECTRAL CLUSTERING","authors":"Kasamina, K. Anusudha","doi":"10.23883/ijrter.2019.5051.1k457","DOIUrl":null,"url":null,"abstract":"Abstract – A brain tumour or intracranial neoplasm occurs due to abnormal cell growth within the brain. It varies in different shape, size and intensity. Here method is been used for the segmentation (Magnetic Resonance Imaging) is used spectral clustering is that it suffers from dense similarity matrix construction. the drawback of dense similarity matrix construction can be overcome identification of region of interest (ROI) FCM and GMM algorithms are used to perform brain tumour segmentation. T edema and tumour core regions are calculate that the proposed method gives better result than the existing","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5051.1k457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract – A brain tumour or intracranial neoplasm occurs due to abnormal cell growth within the brain. It varies in different shape, size and intensity. Here method is been used for the segmentation (Magnetic Resonance Imaging) is used spectral clustering is that it suffers from dense similarity matrix construction. the drawback of dense similarity matrix construction can be overcome identification of region of interest (ROI) FCM and GMM algorithms are used to perform brain tumour segmentation. T edema and tumour core regions are calculate that the proposed method gives better result than the existing
基于超像素光谱聚类的脑肿瘤检测
摘要:脑肿瘤或颅内肿瘤是由于大脑内细胞生长异常而发生的。它有不同的形状、大小和强度。这里采用的分割方法(磁共振成像)是采用谱聚类,其缺点是受相似矩阵构造密集的影响。克服了相似矩阵构造过于密集的缺点,对感兴趣区域(ROI)的识别采用FCM和GMM算法进行脑肿瘤分割。对T水肿和肿瘤核心区域进行了计算,结果表明该方法优于现有方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信