D. Anderson, E. Paradis, G. Raithel, R. Sapiro, C. Holloway
{"title":"High-Resolution Antenna Near-Field Imaging and Sub-THz Measurements with a Small Atomic Vapor-Cell Sensing Element","authors":"D. Anderson, E. Paradis, G. Raithel, R. Sapiro, C. Holloway","doi":"10.1109/GSMM.2018.8439437","DOIUrl":null,"url":null,"abstract":"Atomic sensing and measurement of millimeterwave (mmW) and THz electric fields using quantum-optical EIT spectroscopy of Rydberg states in atomic vapors has garnered significant interest in recent years towards the development of atomic electric-field standards and sensor technologies. Here we describe recent work employing small atomic vapor cell sensing elements for near-field imaging of the radiation pattern of a Ku– band horn antenna at 13.49 GHz. We image fields at a spatial resolution of λ/10 and measure over a 72 to 240 V/m field range using off-resonance AC-Stark shifts of a Rydberg resonance. The same atomic sensing element is used to measure sub-THz electric fields at 255 GHz, an increase in mmW-frequency by more than one order of magnitude. The sub-THz field is measured over a continuous ±100 MHz frequency band using a near-resonant mmW atomic transition.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Atomic sensing and measurement of millimeterwave (mmW) and THz electric fields using quantum-optical EIT spectroscopy of Rydberg states in atomic vapors has garnered significant interest in recent years towards the development of atomic electric-field standards and sensor technologies. Here we describe recent work employing small atomic vapor cell sensing elements for near-field imaging of the radiation pattern of a Ku– band horn antenna at 13.49 GHz. We image fields at a spatial resolution of λ/10 and measure over a 72 to 240 V/m field range using off-resonance AC-Stark shifts of a Rydberg resonance. The same atomic sensing element is used to measure sub-THz electric fields at 255 GHz, an increase in mmW-frequency by more than one order of magnitude. The sub-THz field is measured over a continuous ±100 MHz frequency band using a near-resonant mmW atomic transition.