Whom to Learn From? Graph- vs. Text-based Word Embeddings

M. Salawa, A. Branco, Ruben Branco, J. Rodrigues, Chakaveh Saedi
{"title":"Whom to Learn From? Graph- vs. Text-based Word Embeddings","authors":"M. Salawa, A. Branco, Ruben Branco, J. Rodrigues, Chakaveh Saedi","doi":"10.26615/978-954-452-056-4_120","DOIUrl":null,"url":null,"abstract":"Vectorial representations of meaning can be supported by empirical data from diverse sources and obtained with diverse embedding approaches. This paper aims at screening this experimental space and reports on an assessment of word embeddings supported (i) by data in raw texts vs. in lexical graphs, (ii) by lexical information encoded in association- vs. inference-based graphs, and obtained (iii) by edge reconstruction- vs. matrix factorisation vs. random walk-based graph embedding methods. The results observed with these experiments indicate that the best solutions with graph-based word embeddings are very competitive, consistently outperforming mainstream text-based ones.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Vectorial representations of meaning can be supported by empirical data from diverse sources and obtained with diverse embedding approaches. This paper aims at screening this experimental space and reports on an assessment of word embeddings supported (i) by data in raw texts vs. in lexical graphs, (ii) by lexical information encoded in association- vs. inference-based graphs, and obtained (iii) by edge reconstruction- vs. matrix factorisation vs. random walk-based graph embedding methods. The results observed with these experiments indicate that the best solutions with graph-based word embeddings are very competitive, consistently outperforming mainstream text-based ones.
向谁学习?基于图与基于文本的词嵌入
意义的向量表示可以由来自不同来源的经验数据支持,并通过不同的嵌入方法获得。本文旨在筛选这个实验空间,并报告对以下几种词嵌入的评估:(i)由原始文本中的数据与词汇图中支持的词嵌入,(ii)由关联图与基于推理图中编码的词汇信息支持的词嵌入,以及(iii)由边缘重建、矩阵分解与基于随机行走的图嵌入方法获得的词嵌入。通过这些实验观察到的结果表明,基于图的词嵌入的最佳解决方案非常有竞争力,始终优于主流的基于文本的词嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信