Batch Mode Active Learning for Individual Treatment Effect Estimation

Zoltán Puha, M. Kaptein, A. Lemmens
{"title":"Batch Mode Active Learning for Individual Treatment Effect Estimation","authors":"Zoltán Puha, M. Kaptein, A. Lemmens","doi":"10.1109/ICDMW51313.2020.00123","DOIUrl":null,"url":null,"abstract":"Field experimentation has become a well-established practice to estimate individual treatment effects. In recent years, the Active Learning (AL) literature has developed methods to optimize the design of field experiments and reduce their cost. In this paper, we propose a novel AL algorithm for individual treatment effect estimation that works in batch mode for cases where the outcomes of an intervention are not immediate. It uniquely combines Expected Model Change Maximization and Bayesian Additive Regression Trees. Our approach (B-EMCMITE) uses the predictive uncertainty around the individual treatment effects to actively sample new units for experimentation and decide which treatment they will receive. We perform extensive simulations and test our approach on semi-synthetic, real-life data. B-EMCMITE outperforms alternative approaches and substantially reduces the number of observations needed to estimate individual treatment effects compared to A/B tests.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Field experimentation has become a well-established practice to estimate individual treatment effects. In recent years, the Active Learning (AL) literature has developed methods to optimize the design of field experiments and reduce their cost. In this paper, we propose a novel AL algorithm for individual treatment effect estimation that works in batch mode for cases where the outcomes of an intervention are not immediate. It uniquely combines Expected Model Change Maximization and Bayesian Additive Regression Trees. Our approach (B-EMCMITE) uses the predictive uncertainty around the individual treatment effects to actively sample new units for experimentation and decide which treatment they will receive. We perform extensive simulations and test our approach on semi-synthetic, real-life data. B-EMCMITE outperforms alternative approaches and substantially reduces the number of observations needed to estimate individual treatment effects compared to A/B tests.
批处理模式主动学习的个体治疗效果估计
现场试验已成为一种公认的评估个别处理效果的做法。近年来,主动学习(AL)文献开发了优化现场实验设计和降低实验成本的方法。在本文中,我们提出了一种新的人工智能算法,用于个体治疗效果估计,该算法在批处理模式下工作,用于干预结果不是立竿见影的情况。它独特地结合了期望模型变化最大化和贝叶斯加性回归树。我们的方法(B-EMCMITE)利用个体治疗效果的预测不确定性,积极取样新单位进行实验,并决定他们将接受哪种治疗。我们进行了大量的模拟,并在半合成的真实数据上测试了我们的方法。与A/B测试相比,B- emcmite优于其他方法,并且大大减少了估计单个治疗效果所需的观察次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信