A Geometric Characterization of Fisher Information from Quantized Samples with Applications to Distributed Statistical Estimation

L. P. Barnes, Yanjun Han, Ayfer Özgür
{"title":"A Geometric Characterization of Fisher Information from Quantized Samples with Applications to Distributed Statistical Estimation","authors":"L. P. Barnes, Yanjun Han, Ayfer Özgür","doi":"10.1109/ALLERTON.2018.8635899","DOIUrl":null,"url":null,"abstract":"Consider the Fisher information for estimating a vector $\\theta \\in \\mathbb {R}^{d}$ from the quantized version of a statistical sample $X \\sim f(x|\\theta)$. Let M be a k-bit quantization of $X.$ We provide a geometric characterization of the trace of the Fisher information matrix $I_{M}(\\theta)$ in terms of the score function $S_{\\theta }(X)$. When $k=1$, we exactly solve the extremal problem of maximizing this geometric quantity for the Gaussian location model, which allows us to conclude that in this model, a half-space quantization is the one-bit quantization that maximizes $Tr(I_{M}(\\theta))$. Under assumptions on the tail of the distribution of $S_{\\theta }(X)$ projected onto any unit vector in $\\mathbb {R}^{d}$, we give upper bounds demonstrating how $Tr(I_{M}(\\theta))$ can scale with k. We apply these results to find lower bounds on the minimax risk of estimating $\\theta $ from multiple quantized samples of X, for example in a distributed setting where the samples are distributed across multiple nodes and each node has a total budget of k-bits to communicate its sample to a centralized estimator. Our bounds apply in a unified way to many common statistical models including the Gaussian location model and discrete distribution estimation, and they recover and generalize existing results in the literature with simpler and more transparent proofs.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Consider the Fisher information for estimating a vector $\theta \in \mathbb {R}^{d}$ from the quantized version of a statistical sample $X \sim f(x|\theta)$. Let M be a k-bit quantization of $X.$ We provide a geometric characterization of the trace of the Fisher information matrix $I_{M}(\theta)$ in terms of the score function $S_{\theta }(X)$. When $k=1$, we exactly solve the extremal problem of maximizing this geometric quantity for the Gaussian location model, which allows us to conclude that in this model, a half-space quantization is the one-bit quantization that maximizes $Tr(I_{M}(\theta))$. Under assumptions on the tail of the distribution of $S_{\theta }(X)$ projected onto any unit vector in $\mathbb {R}^{d}$, we give upper bounds demonstrating how $Tr(I_{M}(\theta))$ can scale with k. We apply these results to find lower bounds on the minimax risk of estimating $\theta $ from multiple quantized samples of X, for example in a distributed setting where the samples are distributed across multiple nodes and each node has a total budget of k-bits to communicate its sample to a centralized estimator. Our bounds apply in a unified way to many common statistical models including the Gaussian location model and discrete distribution estimation, and they recover and generalize existing results in the literature with simpler and more transparent proofs.
量化样本中Fisher信息的几何表征及其在分布统计估计中的应用
考虑从统计样本$X \sim f(x|\theta)$的量子化版本估计向量$\theta \in \mathbb {R}^{d}$的Fisher信息。设M为$X.$的k位量化。我们根据分数函数$S_{\theta }(X)$提供Fisher信息矩阵$I_{M}(\theta)$轨迹的几何表征。当$k=1$时,我们精确地解决了高斯位置模型最大化该几何量的极值问题,这使我们可以得出结论,在该模型中,半空间量化是最大化$Tr(I_{M}(\theta))$的一位量化。在假设$S_{\theta }(X)$分布的尾部投影到$\mathbb {R}^{d}$中的任何单位向量上,我们给出了上界,展示了$Tr(I_{M}(\theta))$如何随k缩放。我们应用这些结果来找到从X的多个量化样本中估计$\theta $的最小最大风险的下界。例如,在分布式设置中,样本分布在多个节点上,每个节点有k位的总预算来将其样本传递给集中估计器。我们的边界以统一的方式适用于许多常见的统计模型,包括高斯位置模型和离散分布估计,它们以更简单和更透明的证明恢复和推广了文献中的现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信