Unsupervised Measuring of Entity Resolution Consistency

Jeffrey Fisher, Qing Wang
{"title":"Unsupervised Measuring of Entity Resolution Consistency","authors":"Jeffrey Fisher, Qing Wang","doi":"10.1109/ICDMW.2015.162","DOIUrl":null,"url":null,"abstract":"Entity resolution (ER) is a common data cleaning and data-integration task that aims to determine which records in one or more data sets refer to the same real-world entities. In most cases no training data exists and the ER process involves considerable trial and error, with an often time-consuming manual evaluation required to determine whether the obtained results are good enough. We propose a method that makes use of transitive closure within triples of records to provide an early indication of inconsistency in an ER result in an unsupervised fashion. We test our approach on three real-world data sets with different similarity calculations and blocking approaches and show that our approach can detect problems with ER resultsearly on without a manual evaluation.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Entity resolution (ER) is a common data cleaning and data-integration task that aims to determine which records in one or more data sets refer to the same real-world entities. In most cases no training data exists and the ER process involves considerable trial and error, with an often time-consuming manual evaluation required to determine whether the obtained results are good enough. We propose a method that makes use of transitive closure within triples of records to provide an early indication of inconsistency in an ER result in an unsupervised fashion. We test our approach on three real-world data sets with different similarity calculations and blocking approaches and show that our approach can detect problems with ER resultsearly on without a manual evaluation.
实体分辨率一致性的无监督测量
实体解析(ER)是一种常见的数据清理和数据集成任务,旨在确定一个或多个数据集中哪些记录引用了相同的现实世界实体。在大多数情况下,没有训练数据存在,ER过程涉及大量的试验和错误,通常需要耗时的手动评估来确定获得的结果是否足够好。我们提出了一种方法,该方法利用记录三元组中的传递闭包,以无监督的方式提供ER结果中不一致的早期指示。我们在三个真实世界的数据集上用不同的相似度计算和阻塞方法测试了我们的方法,并表明我们的方法可以在没有人工评估的情况下早期检测到ER结果的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信