Kentaro Orimo, Kota Ando, Kodai Ueyoshi, M. Ikebe, T. Asai, M. Motomura
{"title":"FPGA architecture for feed-forward sequential memory network targeting long-term time-series forecasting","authors":"Kentaro Orimo, Kota Ando, Kodai Ueyoshi, M. Ikebe, T. Asai, M. Motomura","doi":"10.1109/ReConFig.2016.7857169","DOIUrl":null,"url":null,"abstract":"Deep learning is being widely used in various applications, and diverse neural networks have been proposed. A form of neural network, such as the novel feed-forward sequential memory network (FSMN), aims to forecast prospective data by extracting the time-series feature. FSMN is a standard feed-forward neural network equipped with time-domain filters, and it can forecast without recurrent feedback. In this paper, we propose a field-programmable gate-array (FPGA) architecture for this model, and exhibit that the resource does not increase exponentially as the network scale increases.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Deep learning is being widely used in various applications, and diverse neural networks have been proposed. A form of neural network, such as the novel feed-forward sequential memory network (FSMN), aims to forecast prospective data by extracting the time-series feature. FSMN is a standard feed-forward neural network equipped with time-domain filters, and it can forecast without recurrent feedback. In this paper, we propose a field-programmable gate-array (FPGA) architecture for this model, and exhibit that the resource does not increase exponentially as the network scale increases.