Tsung-Ta Wu, C. Shen, J. Shieh, Wen-Hsien Huang, Hsing-Hsiang Wang, F. Hsueh, Hisu-Chih Chen, Chih-Chao Yang, Tung-Ying Hsieh, Bo-Yuan Chen, Y. Shiao, Chao-Shun Yang, G. Huang, Kai-Shin Li, T. Hsueh, Chien-Fu Chen, Wei-Hao Chen, Fu-Liang Yang, Meng-Fan Chang, W. Yeh
{"title":"Low-cost and TSV-free monolithic 3D-IC with heterogeneous integration of logic, memory and sensor analogy circuitry for Internet of Things","authors":"Tsung-Ta Wu, C. Shen, J. Shieh, Wen-Hsien Huang, Hsing-Hsiang Wang, F. Hsueh, Hisu-Chih Chen, Chih-Chao Yang, Tung-Ying Hsieh, Bo-Yuan Chen, Y. Shiao, Chao-Shun Yang, G. Huang, Kai-Shin Li, T. Hsueh, Chien-Fu Chen, Wei-Hao Chen, Fu-Liang Yang, Meng-Fan Chang, W. Yeh","doi":"10.1109/IEDM.2015.7409765","DOIUrl":null,"url":null,"abstract":"For the first time, a CO2 far-infrared laser annealing (CO2-FIR-LA) technology was developed as the activation solution to enable highly heterogeneous integration without causing device degradation for TSV-free monolithic 3DIC. This process is capable to implement small-area-small-load vertical connectors, gate-first high-k/metal gate MOSFETs and non-Al metal inter-connects. Such a far-infrared laser annealing exhibits excellent selective activation capability that enables performance-enhanced stacked sub-40nm UTB-MOSFETs (Ion-enhanced over 50 %). Unlike TSV-based 3D-IC, this 3D Monolithic IC enables ultra-wide-IO connections between layers to achieve high bandwidth with less power consumption. A test chip with logic circuits, 6T SRAM, ReRAM, sense amplifiers, analog amplifiers and gas sensors was integrated to confirm the superiority in heterogeneous integration of proposed CO2-FIR-LA technology. This chip demonstrates the most variable functions above reported 3D Monolithic ICs. This CO2-FIR-LA based TSV-free 3D Monolithic IC can realize low cost, small footprint, and highly heterogeneous integration for Internet of Things.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
For the first time, a CO2 far-infrared laser annealing (CO2-FIR-LA) technology was developed as the activation solution to enable highly heterogeneous integration without causing device degradation for TSV-free monolithic 3DIC. This process is capable to implement small-area-small-load vertical connectors, gate-first high-k/metal gate MOSFETs and non-Al metal inter-connects. Such a far-infrared laser annealing exhibits excellent selective activation capability that enables performance-enhanced stacked sub-40nm UTB-MOSFETs (Ion-enhanced over 50 %). Unlike TSV-based 3D-IC, this 3D Monolithic IC enables ultra-wide-IO connections between layers to achieve high bandwidth with less power consumption. A test chip with logic circuits, 6T SRAM, ReRAM, sense amplifiers, analog amplifiers and gas sensors was integrated to confirm the superiority in heterogeneous integration of proposed CO2-FIR-LA technology. This chip demonstrates the most variable functions above reported 3D Monolithic ICs. This CO2-FIR-LA based TSV-free 3D Monolithic IC can realize low cost, small footprint, and highly heterogeneous integration for Internet of Things.