Learning the optimal state-feedback using deep networks

Carlos Sánchez-Sánchez, D. Izzo, Daniel Hennes
{"title":"Learning the optimal state-feedback using deep networks","authors":"Carlos Sánchez-Sánchez, D. Izzo, Daniel Hennes","doi":"10.1109/SSCI.2016.7850105","DOIUrl":null,"url":null,"abstract":"We investigate the use of deep artificial neural networks to approximate the optimal state-feedback control of continuous time, deterministic, non-linear systems. The networks are trained in a supervised manner using trajectories generated by solving the optimal control problem via the Hermite-Simpson transcription method. We find that deep networks are able to represent the optimal state-feedback with high accuracy and precision well outside the training area. We consider non-linear dynamical models under different cost functions that result in both smooth and discontinuous (bang-bang) optimal control solutions. In particular, we investigate the inverted pendulum swing-up and stabilization, a multicopter pin-point landing and a spacecraft free landing problem. Across all domains, we find that deep networks significantly outperform shallow networks in the ability to build an accurate functional representation of the optimal control. In the case of spacecraft and multicopter landing, deep networks are able to achieve safe landings consistently even when starting well outside of the training area.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We investigate the use of deep artificial neural networks to approximate the optimal state-feedback control of continuous time, deterministic, non-linear systems. The networks are trained in a supervised manner using trajectories generated by solving the optimal control problem via the Hermite-Simpson transcription method. We find that deep networks are able to represent the optimal state-feedback with high accuracy and precision well outside the training area. We consider non-linear dynamical models under different cost functions that result in both smooth and discontinuous (bang-bang) optimal control solutions. In particular, we investigate the inverted pendulum swing-up and stabilization, a multicopter pin-point landing and a spacecraft free landing problem. Across all domains, we find that deep networks significantly outperform shallow networks in the ability to build an accurate functional representation of the optimal control. In the case of spacecraft and multicopter landing, deep networks are able to achieve safe landings consistently even when starting well outside of the training area.
利用深度网络学习最优状态反馈
我们研究了使用深度人工神经网络来近似连续时间,确定性,非线性系统的最优状态反馈控制。通过Hermite-Simpson转录方法求解最优控制问题生成的轨迹,以监督的方式训练网络。我们发现深度网络能够在训练区域之外以较高的准确度和精度表示最优状态反馈。我们考虑了不同代价函数下的非线性动力学模型,得到光滑和不连续(砰砰)最优控制解。特别地,我们研究了倒立摆的摆起和稳定问题、多旋翼机的定点着陆问题和航天器的自由着陆问题。在所有领域中,我们发现深度网络在构建最优控制的精确函数表示的能力上明显优于浅网络。在航天器和多架直升机着陆的情况下,即使在训练区域之外开始,深度网络也能够始终如一地实现安全着陆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信