Quality Evaluation of an Anonymized Dataset

Sam Fletcher, M. Islam
{"title":"Quality Evaluation of an Anonymized Dataset","authors":"Sam Fletcher, M. Islam","doi":"10.1109/ICPR.2014.618","DOIUrl":null,"url":null,"abstract":"In this study we argue that the traditional approach of evaluating the information quality of an anonymized (or otherwise modified) dataset is questionable. We propose a novel and simple approach to evaluate the information quality of a modified dataset, and thereby the quality of techniques that modify data. We carry out experiments on eleven datasets and the empirical results strongly support our arguments. We also present some supplementary measures to our approach that provide additional insight into the information quality of modified data.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this study we argue that the traditional approach of evaluating the information quality of an anonymized (or otherwise modified) dataset is questionable. We propose a novel and simple approach to evaluate the information quality of a modified dataset, and thereby the quality of techniques that modify data. We carry out experiments on eleven datasets and the empirical results strongly support our arguments. We also present some supplementary measures to our approach that provide additional insight into the information quality of modified data.
一个匿名数据集的质量评估
在本研究中,我们认为评估匿名(或其他修改)数据集的信息质量的传统方法是有问题的。我们提出了一种新颖而简单的方法来评估修改数据集的信息质量,从而评估修改数据的技术质量。我们在11个数据集上进行了实验,实验结果有力地支持了我们的论点。我们还对我们的方法提出了一些补充措施,这些措施提供了对修改数据的信息质量的额外见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信