Deriving stochastic properties from behavior models defined by Monterey Phoenix

John Quartuccio, K. Giammarco, M. Auguston
{"title":"Deriving stochastic properties from behavior models defined by Monterey Phoenix","authors":"John Quartuccio, K. Giammarco, M. Auguston","doi":"10.1109/SYSOSE.2017.7994961","DOIUrl":null,"url":null,"abstract":"Stochastic properties of behavior models are of interest to the developer of a System of Systems (SoS) in order to gain insight to the likelihood of potential outcomes of the system. Constraints added to the system introduce changes to the inherent dependencies within a representative Bayesian belief network; thereby impacting the system. This paper defines a probability process model that may be used to identify the probability of outcomes compliant with behavior models defined in Monterey Phoenix (MP), with constraints added to the model.","PeriodicalId":439829,"journal":{"name":"2017 12th System of Systems Engineering Conference (SoSE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2017.7994961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stochastic properties of behavior models are of interest to the developer of a System of Systems (SoS) in order to gain insight to the likelihood of potential outcomes of the system. Constraints added to the system introduce changes to the inherent dependencies within a representative Bayesian belief network; thereby impacting the system. This paper defines a probability process model that may be used to identify the probability of outcomes compliant with behavior models defined in Monterey Phoenix (MP), with constraints added to the model.
从Monterey Phoenix定义的行为模型中导出随机特性
行为模型的随机特性对系统的系统(so)的开发人员很感兴趣,以便深入了解系统潜在结果的可能性。添加到系统中的约束引入了代表性贝叶斯信念网络中固有依赖关系的变化;从而影响系统。本文定义了一个概率过程模型,该模型可用于识别符合Monterey Phoenix (MP)中定义的行为模型的结果的概率,并在模型中添加了约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信