Design of flat magnetic core for inductively coupled coils in high efficiency wireless power transfer application

M. X. Chen, K. Cheng
{"title":"Design of flat magnetic core for inductively coupled coils in high efficiency wireless power transfer application","authors":"M. X. Chen, K. Cheng","doi":"10.1109/PESA.2017.8277780","DOIUrl":null,"url":null,"abstract":"A pad-like flat magnetic core with high permeability is adopted and was placed under the primary side coil as well as above the secondary side coil of wireless power transfer (WPT) system. It can be as a shielding for the magnetic field. Moreover, the insertion of the magnetic material increases the coupling coefficient of the two coils and thus reduces the leakage flux compared with core-less system. A WPT system with nominal power of 200W was built to validate the feasibility of the proposed method. Results show that after inserting the magnetic core, the power transfer efficiency is increased by about 30% with power transfer distance being 60mm–80mm.","PeriodicalId":223569,"journal":{"name":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESA.2017.8277780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A pad-like flat magnetic core with high permeability is adopted and was placed under the primary side coil as well as above the secondary side coil of wireless power transfer (WPT) system. It can be as a shielding for the magnetic field. Moreover, the insertion of the magnetic material increases the coupling coefficient of the two coils and thus reduces the leakage flux compared with core-less system. A WPT system with nominal power of 200W was built to validate the feasibility of the proposed method. Results show that after inserting the magnetic core, the power transfer efficiency is increased by about 30% with power transfer distance being 60mm–80mm.
高效无线电力传输中电感耦合线圈扁平磁芯的设计
采用一种高磁导率的垫状扁平磁芯,置于无线电力传输系统的一次侧线圈下方和二次侧线圈上方。它可以作为磁场的屏蔽物。此外,磁性材料的插入增加了两线圈的耦合系数,从而与无铁芯系统相比降低了漏磁。建立了一个标称功率为200W的WPT系统,验证了该方法的可行性。结果表明,在功率传输距离为60mm ~ 80mm时,插入磁芯后,功率传输效率提高约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信