Software quality prediction using mixture models with EM algorithm

Ping Guo, Michael R. Lyu
{"title":"Software quality prediction using mixture models with EM algorithm","authors":"Ping Guo, Michael R. Lyu","doi":"10.1109/APAQ.2000.883780","DOIUrl":null,"url":null,"abstract":"The use of the statistical technique of mixture model analysis as a tool for early prediction of fault-prone program modules is investigated. The expectation-maximum likelihood (EM) algorithm is engaged to build the model. By only employing software size and complexity metrics, this technique can be used to develop a model for predicting software quality even without the prior knowledge of the number of faults in the modules. In addition, Akaike Information Criterion (AIC) is used to select the model number which is assumed to be the class number the program modules should be classified. The technique is successful in classifying software into fault-prone and non fault-prone modules with a relatively low error rate, providing a reliable indicator for software quality prediction.","PeriodicalId":432680,"journal":{"name":"Proceedings First Asia-Pacific Conference on Quality Software","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First Asia-Pacific Conference on Quality Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APAQ.2000.883780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The use of the statistical technique of mixture model analysis as a tool for early prediction of fault-prone program modules is investigated. The expectation-maximum likelihood (EM) algorithm is engaged to build the model. By only employing software size and complexity metrics, this technique can be used to develop a model for predicting software quality even without the prior knowledge of the number of faults in the modules. In addition, Akaike Information Criterion (AIC) is used to select the model number which is assumed to be the class number the program modules should be classified. The technique is successful in classifying software into fault-prone and non fault-prone modules with a relatively low error rate, providing a reliable indicator for software quality prediction.
结合EM算法的混合模型软件质量预测
研究了利用混合模型分析的统计技术对易故障程序模块进行早期预测的方法。采用期望-最大似然(EM)算法建立模型。通过仅使用软件大小和复杂性度量,该技术可以用于开发预测软件质量的模型,即使没有模块中故障数量的先验知识。此外,采用赤池信息准则(Akaike Information Criterion, AIC)选择模型号,假定模型号为程序模块应分类的类号。该技术成功地将软件划分为易故障模块和非易故障模块,错误率相对较低,为软件质量预测提供了可靠的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信