Stochastic maximum principle for discrete time mean‐field optimal control problems

Arzu Ahmadova, N. Mahmudov
{"title":"Stochastic maximum principle for discrete time mean‐field optimal control problems","authors":"Arzu Ahmadova, N. Mahmudov","doi":"10.1002/oca.3042","DOIUrl":null,"url":null,"abstract":"This article studies optimal control of a discrete‐time stochastic differential equation of mean‐field type with coefficients dependent on function of the law and state of the process. A new version of the maximum principle for discrete‐time mean‐field type stochastic optimal control problems is established, using new discrete‐time mean‐field backward stochastic equations. The cost functional is also of mean‐field type. The study derives necessary first‐order and sufficient optimality conditions using adjoint equations that take the form of discrete‐time backward stochastic differential equations with a mean‐field component. An optimization problem for production and consumption choice is used as an example.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article studies optimal control of a discrete‐time stochastic differential equation of mean‐field type with coefficients dependent on function of the law and state of the process. A new version of the maximum principle for discrete‐time mean‐field type stochastic optimal control problems is established, using new discrete‐time mean‐field backward stochastic equations. The cost functional is also of mean‐field type. The study derives necessary first‐order and sufficient optimality conditions using adjoint equations that take the form of discrete‐time backward stochastic differential equations with a mean‐field component. An optimization problem for production and consumption choice is used as an example.
离散时间平均场最优控制问题的随机极大值原理
本文研究了系数依赖于过程规律和状态函数的离散时间平均场型随机微分方程的最优控制问题。利用新的离散时间平均场倒向随机方程,建立了离散时间平均场型随机最优控制问题的最大值原理的新版本。成本函数也是平均场型的。本文利用具有平均场分量的离散时间倒向随机微分方程的伴随方程,导出了必要的一阶和充分最优性条件。以生产与消费选择的优化问题为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信