RSNet: A Compact Relative Squeezing Net for Image Recognition

Qi Zhao, Nauman Raoof, Shuchang Lyu, Boxue Zhang, W. Feng
{"title":"RSNet: A Compact Relative Squeezing Net for Image Recognition","authors":"Qi Zhao, Nauman Raoof, Shuchang Lyu, Boxue Zhang, W. Feng","doi":"10.1109/VCIP47243.2019.8966024","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks(CNN) are showing powerful performance on image recognition tasks. However, when CNN is applied to mobile devices, with limited computing and memory resource, it requires more compact design to maintain a relatively high performance. In this paper, we propose Relative Squeezing Net(RSNet) that provides technical insight into CNN structure for designing a compact model. In an endeavor to improve CondenseNet, we introduce Relative-Squeezing bottleneck where output is weighted percentage of input channels. The design of our bottleneck can transmit diverse and most useful features at all stages. We also employ multiple compression layers to constrain the output channels of feature maps which can eliminate superfluous feature maps and transmit powerful representations to next layers. We evaluate our model on two benchmark datasets; CIFAR and ImageNet. Experimental results show that RSNet achieves state-of-the-art results with less parameters and FLOPs and is more efficient than compact architectures such as CondenseNet, MobileNet and ShuffleNet.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8966024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Convolutional neural networks(CNN) are showing powerful performance on image recognition tasks. However, when CNN is applied to mobile devices, with limited computing and memory resource, it requires more compact design to maintain a relatively high performance. In this paper, we propose Relative Squeezing Net(RSNet) that provides technical insight into CNN structure for designing a compact model. In an endeavor to improve CondenseNet, we introduce Relative-Squeezing bottleneck where output is weighted percentage of input channels. The design of our bottleneck can transmit diverse and most useful features at all stages. We also employ multiple compression layers to constrain the output channels of feature maps which can eliminate superfluous feature maps and transmit powerful representations to next layers. We evaluate our model on two benchmark datasets; CIFAR and ImageNet. Experimental results show that RSNet achieves state-of-the-art results with less parameters and FLOPs and is more efficient than compact architectures such as CondenseNet, MobileNet and ShuffleNet.
RSNet:一种用于图像识别的紧凑相对压缩网络
卷积神经网络(CNN)在图像识别任务中表现出强大的性能。然而,当CNN应用于移动设备时,由于计算和内存资源有限,需要更紧凑的设计来保持相对较高的性能。在本文中,我们提出了相对压缩网络(RSNet),它为设计紧凑模型提供了对CNN结构的技术洞察。为了改进consenet,我们引入了相对压缩瓶颈,其中输出是输入通道的加权百分比。我们的瓶颈设计可以在所有阶段传递各种最有用的功能。我们还使用多个压缩层来约束特征映射的输出通道,这样可以消除多余的特征映射,并将强大的表示传递给下一层。我们在两个基准数据集上评估我们的模型;CIFAR和ImageNet。实验结果表明,RSNet以更少的参数和FLOPs获得了最先进的结果,并且比紧凑的架构(如CondenseNet, MobileNet和ShuffleNet)效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信