Sampling from Gauss Rules

M. Evans, T. Swartz
{"title":"Sampling from Gauss Rules","authors":"M. Evans, T. Swartz","doi":"10.1137/0909066","DOIUrl":null,"url":null,"abstract":"Approximating multidimensional integrals via product quadrature rules becomes increasingly intractable as the dimension increases. Hammersley [Ann. New York Acad. Sci., 86 (1960), pp. 844–874] suggested sampling from product quadrature rules and Tsuda [Numer. Math., 20 (1973), pp. 377–391] considered this method using Fejer rules. In this paper we consider this approach using Gauss rules. Results are obtained concerning the variance of this form of sampling relative to sampling from the continuous distributions represented by the weight functions. It is shown that this approach can lead to variance reduction and its use is discussed in several examples.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Approximating multidimensional integrals via product quadrature rules becomes increasingly intractable as the dimension increases. Hammersley [Ann. New York Acad. Sci., 86 (1960), pp. 844–874] suggested sampling from product quadrature rules and Tsuda [Numer. Math., 20 (1973), pp. 377–391] considered this method using Fejer rules. In this paper we consider this approach using Gauss rules. Results are obtained concerning the variance of this form of sampling relative to sampling from the continuous distributions represented by the weight functions. It is shown that this approach can lead to variance reduction and its use is discussed in several examples.
从高斯规则中抽样
随着维数的增加,用积求积规则逼近多维积分变得越来越棘手。Hammersley[安。纽约科学学院。, 86(1960),第844-874页]建议从积求积规则和Tsuda [number。数学。, 20 (1973), pp. 377-391]使用Fejer规则考虑了这种方法。在本文中,我们用高斯规则来考虑这种方法。得到了这种抽样形式相对于由权函数表示的连续分布的抽样的方差的结果。结果表明,这种方法可以减少方差,并在几个例子中讨论了它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信