Convolutional Drift Networks for Video Classification

Dillon Graham, Seyed Hamed Fatemi Langroudi, Christopher Kanan, D. Kudithipudi
{"title":"Convolutional Drift Networks for Video Classification","authors":"Dillon Graham, Seyed Hamed Fatemi Langroudi, Christopher Kanan, D. Kudithipudi","doi":"10.1109/ICRC.2017.8123647","DOIUrl":null,"url":null,"abstract":"Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets. We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio- temporal task was produced by only training a single feed-forward layer in the CDN.","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets. We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio- temporal task was produced by only training a single feed-forward layer in the CDN.
用于视频分类的卷积漂移网络
分析像视频这样的时空数据是一项具有挑战性的任务,需要有效地处理视觉和时间信息。卷积神经网络通过迁移学习显示了作为基线固定特征提取器的前景,这种技术有助于将视觉信息的训练成本降至最低。时间信息通常使用手工制作的特征或递归神经网络处理,但这可能过于具体或过于复杂。建立一个完全可训练的系统,可以有效地分析时空数据,而无需手工制作的特征或复杂的训练是一个开放的挑战。提出了一种新的神经网络体系结构来解决这一挑战,卷积漂移网络(CDN)。我们的CDN架构结合了深度卷积神经网络的视觉特征提取能力和水库计算提供的内在高效的时间处理。在这篇关于CDN的介绍性文章中,我们提供了一个非常简单的基线实现,测试了两个以自我为中心(第一人称)的视频活动数据集。我们实现了视频级别的活动分类结果,与最先进的方法相当。值得注意的是,在这个复杂的时空任务上,仅通过训练CDN中的单个前馈层就能产生性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信