Finite memory universal portfolios

A. Tavory, M. Feder
{"title":"Finite memory universal portfolios","authors":"A. Tavory, M. Feder","doi":"10.1109/ISIT.2008.4595219","DOIUrl":null,"url":null,"abstract":"We consider the memory requirements of stock-market investment algorithms through their finite state machine (FSM) implementations. The regret of an online algorithm is the limit difference between its capital growth rate and that of the optimal (in hindsight) constant rebalanced portfolio. Let lscr, isin, and m be the number of states, the regret, and the number of stocks, respectively. We consider the relationships between mnplus and isin for large m. For individual markets (with no underlying distributions) and deterministic FSMs, we show that any isin-regret FSM must have Omega ((1/isin)m-1/m-1/2) states, and also show an isin-regret FSMs with O ((1/isin)4m) states. These space-complexity questions are especially pertinent to state portfolio algorithms, where both market history and side-information are taken into account.","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4595219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the memory requirements of stock-market investment algorithms through their finite state machine (FSM) implementations. The regret of an online algorithm is the limit difference between its capital growth rate and that of the optimal (in hindsight) constant rebalanced portfolio. Let lscr, isin, and m be the number of states, the regret, and the number of stocks, respectively. We consider the relationships between mnplus and isin for large m. For individual markets (with no underlying distributions) and deterministic FSMs, we show that any isin-regret FSM must have Omega ((1/isin)m-1/m-1/2) states, and also show an isin-regret FSMs with O ((1/isin)4m) states. These space-complexity questions are especially pertinent to state portfolio algorithms, where both market history and side-information are taken into account.
有限记忆通用组合
我们通过有限状态机(FSM)实现来考虑股票市场投资算法的内存需求。在线算法的遗憾之处在于,它的资本增长率与最优(事后看来)持续再平衡投资组合之间的差距有限。设lscr、isin和m分别为状态数、后悔数和存量数。对于大m,我们考虑了mnplus和isin之间的关系。对于单个市场(没有潜在分布)和确定性FSM,我们证明了任何isin-regret FSM必须具有Omega ((1/isin)m-1/m-1/2)状态,并且还显示了具有O ((1/isin)4m)状态的isin-regret FSM。这些空间复杂性问题与状态投资组合算法特别相关,其中市场历史和附带信息都被考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信