Genetic Algorithm with Machine Learning to Estimate the Optimal Objective Function Values of Subproblems

H. Iima, Yohei Hazama
{"title":"Genetic Algorithm with Machine Learning to Estimate the Optimal Objective Function Values of Subproblems","authors":"H. Iima, Yohei Hazama","doi":"10.1145/3533050.3533051","DOIUrl":null,"url":null,"abstract":"This paper addresses an optimization problem with two decision variable vectors. This problem can be divided into multiple subproblems when an arbitrary value is given to the first decision variable vector. In conventional genetic algorithms (GAs) for the problem, an individual is often expressed by the value of the first decision variable vector. In evaluating the individual, the value of the remaining decision variable vector is determined by metaheuristics or greedy algorithms. However, such GAs are time-consuming or not general-purpose. We propose a GA with a neural network model to estimate the optimal objective function values of the subproblems. Experimental results compared to other GAs show that the proposed method is effective.","PeriodicalId":109214,"journal":{"name":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533050.3533051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses an optimization problem with two decision variable vectors. This problem can be divided into multiple subproblems when an arbitrary value is given to the first decision variable vector. In conventional genetic algorithms (GAs) for the problem, an individual is often expressed by the value of the first decision variable vector. In evaluating the individual, the value of the remaining decision variable vector is determined by metaheuristics or greedy algorithms. However, such GAs are time-consuming or not general-purpose. We propose a GA with a neural network model to estimate the optimal objective function values of the subproblems. Experimental results compared to other GAs show that the proposed method is effective.
基于机器学习的遗传算法估计子问题的最优目标函数值
本文研究了一个具有两个决策变量向量的优化问题。当给定第一个决策变量向量的任意值时,该问题可以分解为多个子问题。在传统的遗传算法(GAs)中,个体通常由第一个决策变量向量的值表示。在评估个体时,剩余决策变量向量的值由元启发式或贪婪算法确定。然而,这样的ga是耗时的,或者不是通用的。我们提出了一种基于神经网络模型的遗传算法来估计子问题的最优目标函数值。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信