Intrusion detection in role administrated database: Transaction-based approach

S. Darwish, S. Guirguis, Mahmoud M. Ghozlan
{"title":"Intrusion detection in role administrated database: Transaction-based approach","authors":"S. Darwish, S. Guirguis, Mahmoud M. Ghozlan","doi":"10.1109/ICCES.2013.6707175","DOIUrl":null,"url":null,"abstract":"Most of valuable information resources for all organizations are stored in database. It's a serious subject to protect this information against intruders. However, conventional security mechanisms haven't been designed to detect anomalous actions of database users. Intrusion detection systems (IDS) deliver an extra layer of security that cannot be guaranteed by built-in security tools. IDS provide the ideal solution to defend databases from intruders. In this paper, we suggest an anomaly detection approach that summarizes the raw transactional SQL queries into compact data structure called hexplet, which can model normal database access behavior (abstract the user's role profile) and recognize impostors specifically tailored for role-based access control (RBAC) database system. This hexplet allows us to preserve the correlation among SQL statements in the same transaction by exploiting the information in the transaction-log entry. Our target is to improve detection accuracy, specially the detection of those intruders inside the organization who behave strange behavior. Our model utilizes Naive Bayes Classifier (NBC) as a simple technique for evaluating the legitimacy of transaction. Experimental results show the performance of the proposed model in the term of error equal rate.","PeriodicalId":277807,"journal":{"name":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2013.6707175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most of valuable information resources for all organizations are stored in database. It's a serious subject to protect this information against intruders. However, conventional security mechanisms haven't been designed to detect anomalous actions of database users. Intrusion detection systems (IDS) deliver an extra layer of security that cannot be guaranteed by built-in security tools. IDS provide the ideal solution to defend databases from intruders. In this paper, we suggest an anomaly detection approach that summarizes the raw transactional SQL queries into compact data structure called hexplet, which can model normal database access behavior (abstract the user's role profile) and recognize impostors specifically tailored for role-based access control (RBAC) database system. This hexplet allows us to preserve the correlation among SQL statements in the same transaction by exploiting the information in the transaction-log entry. Our target is to improve detection accuracy, specially the detection of those intruders inside the organization who behave strange behavior. Our model utilizes Naive Bayes Classifier (NBC) as a simple technique for evaluating the legitimacy of transaction. Experimental results show the performance of the proposed model in the term of error equal rate.
角色管理数据库中的入侵检测:基于事务的方法
所有组织的大部分有价值的信息资源都存储在数据库中。保护这些信息不受侵入是一个严肃的问题。然而,传统的安全机制并没有被设计用来检测数据库用户的异常行为。入侵检测系统(IDS)提供了内置安全工具无法保证的额外安全层。IDS提供了保护数据库免受入侵者侵害的理想解决方案。在本文中,我们提出了一种异常检测方法,该方法将原始事务性SQL查询总结为称为hexplet的紧凑数据结构,该结构可以建模正常的数据库访问行为(抽象用户的角色配置文件)并识别专门为基于角色的访问控制(RBAC)数据库系统量身定制的冒名者。这个表单允许我们通过利用事务日志条目中的信息来保持同一事务中SQL语句之间的相关性。我们的目标是提高检测的准确性,特别是对组织内部那些行为怪异的入侵者的检测。我们的模型使用朴素贝叶斯分类器(NBC)作为评估交易合法性的简单技术。实验结果表明,该模型在误差等率方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信