Yuan Xu, Tiancheng He, Ruiqi Sun, Yeh-Hao Ma, Yier Jin, An Zou
{"title":"SHAPE","authors":"Yuan Xu, Tiancheng He, Ruiqi Sun, Yeh-Hao Ma, Yier Jin, An Zou","doi":"10.1145/3508352.3549409","DOIUrl":null,"url":null,"abstract":"Despite being employed in burgeoning efforts to accelerate artificial intelligence, heterogeneous architectures have yet to be well managed with strict timing constraints. As a classic task model, multi-segment self-suspension (MSSS) has been proposed for general I/O-intensive systems and computation offloading. However, directly applying this model to heterogeneous architectures with multiple CPUs and many processing units (PEs) suffers tremendous pessimism. In this paper, we present a real-time scheduling approach, SHAPE, for general heterogeneous architectures with significant schedulability and improved utilization rate. We start with building the general task execution pattern on a heterogeneous architecture integrating multiple CPU cores and many PEs such as GPU streaming multiprocessors and FPGA IP cores. A real-time scheduling strategy and corresponding schedulability analysis are presented following the task execution pattern. Compared with state-of-the-art scheduling algorithms through comprehensive experiments on unified and versatile tasks, SHAPE improves the schedulability by 11.1% - 100%. Moreover, experiments performed on the NVIDIA GPU systems further indicate up to 70.9% of pessimism reduction can be achieved by the proposed scheduling. Since we target general heterogeneous architectures, SHAPE can be directly applied to off-the-shelf heterogeneous computing systems with guaranteed deadlines and improved schedulability.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Despite being employed in burgeoning efforts to accelerate artificial intelligence, heterogeneous architectures have yet to be well managed with strict timing constraints. As a classic task model, multi-segment self-suspension (MSSS) has been proposed for general I/O-intensive systems and computation offloading. However, directly applying this model to heterogeneous architectures with multiple CPUs and many processing units (PEs) suffers tremendous pessimism. In this paper, we present a real-time scheduling approach, SHAPE, for general heterogeneous architectures with significant schedulability and improved utilization rate. We start with building the general task execution pattern on a heterogeneous architecture integrating multiple CPU cores and many PEs such as GPU streaming multiprocessors and FPGA IP cores. A real-time scheduling strategy and corresponding schedulability analysis are presented following the task execution pattern. Compared with state-of-the-art scheduling algorithms through comprehensive experiments on unified and versatile tasks, SHAPE improves the schedulability by 11.1% - 100%. Moreover, experiments performed on the NVIDIA GPU systems further indicate up to 70.9% of pessimism reduction can be achieved by the proposed scheduling. Since we target general heterogeneous architectures, SHAPE can be directly applied to off-the-shelf heterogeneous computing systems with guaranteed deadlines and improved schedulability.