{"title":"Optimizing a Semantic Comparator Using CUDA-enabled Graphics Hardware","authors":"Aalap Tripathy, S. Mohan, R. Mahapatra","doi":"10.1109/ICSC.2011.56","DOIUrl":null,"url":null,"abstract":"Emerging semantic search techniques require fast comparison of large \"concept trees\". This paper addresses the challenges involved in fast computation of similarity between two large concept trees using a CUDA-enabled GPGPU co-processor. We propose efficient techniques for the same using fast hash computations, membership tests using Bloom Filters and parallel reduction. We show how a CUDA-enabled mass produced GPU can form the core of a semantic comparator for better semantic search. We experiment run-time, power and energy consumed for similarity computation on two platforms: (1) traditional sever class Intel x86 processor (2) CUDA enabled graphics hardware. Results show 4x speedup with 78% overall energy reduction over sequential processing approaches. Our design can significantly reduce the number of servers required in a distributed search engine data center and can bring an order of magnitude reduction in energy consumption, operational costs and floor area.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Emerging semantic search techniques require fast comparison of large "concept trees". This paper addresses the challenges involved in fast computation of similarity between two large concept trees using a CUDA-enabled GPGPU co-processor. We propose efficient techniques for the same using fast hash computations, membership tests using Bloom Filters and parallel reduction. We show how a CUDA-enabled mass produced GPU can form the core of a semantic comparator for better semantic search. We experiment run-time, power and energy consumed for similarity computation on two platforms: (1) traditional sever class Intel x86 processor (2) CUDA enabled graphics hardware. Results show 4x speedup with 78% overall energy reduction over sequential processing approaches. Our design can significantly reduce the number of servers required in a distributed search engine data center and can bring an order of magnitude reduction in energy consumption, operational costs and floor area.