Optimizing a Semantic Comparator Using CUDA-enabled Graphics Hardware

Aalap Tripathy, S. Mohan, R. Mahapatra
{"title":"Optimizing a Semantic Comparator Using CUDA-enabled Graphics Hardware","authors":"Aalap Tripathy, S. Mohan, R. Mahapatra","doi":"10.1109/ICSC.2011.56","DOIUrl":null,"url":null,"abstract":"Emerging semantic search techniques require fast comparison of large \"concept trees\". This paper addresses the challenges involved in fast computation of similarity between two large concept trees using a CUDA-enabled GPGPU co-processor. We propose efficient techniques for the same using fast hash computations, membership tests using Bloom Filters and parallel reduction. We show how a CUDA-enabled mass produced GPU can form the core of a semantic comparator for better semantic search. We experiment run-time, power and energy consumed for similarity computation on two platforms: (1) traditional sever class Intel x86 processor (2) CUDA enabled graphics hardware. Results show 4x speedup with 78% overall energy reduction over sequential processing approaches. Our design can significantly reduce the number of servers required in a distributed search engine data center and can bring an order of magnitude reduction in energy consumption, operational costs and floor area.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Emerging semantic search techniques require fast comparison of large "concept trees". This paper addresses the challenges involved in fast computation of similarity between two large concept trees using a CUDA-enabled GPGPU co-processor. We propose efficient techniques for the same using fast hash computations, membership tests using Bloom Filters and parallel reduction. We show how a CUDA-enabled mass produced GPU can form the core of a semantic comparator for better semantic search. We experiment run-time, power and energy consumed for similarity computation on two platforms: (1) traditional sever class Intel x86 processor (2) CUDA enabled graphics hardware. Results show 4x speedup with 78% overall energy reduction over sequential processing approaches. Our design can significantly reduce the number of servers required in a distributed search engine data center and can bring an order of magnitude reduction in energy consumption, operational costs and floor area.
使用支持cuda的图形硬件优化语义比较器
新兴的语义搜索技术需要对大型“概念树”进行快速比较。本文解决了使用支持cuda的GPGPU协处理器快速计算两个大型概念树之间相似性所涉及的挑战。我们提出了使用快速哈希计算、使用布隆过滤器和并行约简的成员测试的有效技术。我们展示了支持cuda的量产GPU如何形成语义比较器的核心,以实现更好的语义搜索。我们在两个平台上测试相似度计算的运行时间、功耗和能耗:(1)传统的服务器级Intel x86处理器(2)支持CUDA的图形硬件。结果显示,与顺序处理方法相比,速度提高了4倍,总体能耗降低了78%。我们的设计可以显著减少分布式搜索引擎数据中心所需的服务器数量,并可以在能耗、运营成本和占地面积方面带来数量级的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信