{"title":"Cluster modelling of MOF-5 and its application on gas storage","authors":"Roshni Sharma, S. Gurung, K. Adhikari","doi":"10.3126/hp.v10i1.55274","DOIUrl":null,"url":null,"abstract":"\n \n \n \nMOF-5 exhibits unique characteristics for applications in gas storage particularly in the field of hydrogen storage. MOF-5 is a porous crystalline cubic structure formed by connecting a Zn4O inorganic moiety to benzene-1, 4-dicarboxylate (BDC), a bidentate ligand where, the Zn4O-cluster represents the central part of the structure. It can be an alternative to high pressure tanks and multistage compressor used in hydrogen storage. Using the cluster modelling approach, a thorough investigation of MOF-5 is provided. A density functional theory calculation was performed to examine the hydrogen storage potential in MOF-5. The geometry optimizations were carried out using the B3LYP functional together with the LanL2DZ/6-31G basis set. It is observed that the adsorption of hydrogen in MOF-5 cluster is physisorption and the hydrogen molecule is held in the core with the binding energy in the range 26-27 meV. \n \n \n \n","PeriodicalId":285487,"journal":{"name":"Himalayan Physics","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himalayan Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/hp.v10i1.55274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
MOF-5 exhibits unique characteristics for applications in gas storage particularly in the field of hydrogen storage. MOF-5 is a porous crystalline cubic structure formed by connecting a Zn4O inorganic moiety to benzene-1, 4-dicarboxylate (BDC), a bidentate ligand where, the Zn4O-cluster represents the central part of the structure. It can be an alternative to high pressure tanks and multistage compressor used in hydrogen storage. Using the cluster modelling approach, a thorough investigation of MOF-5 is provided. A density functional theory calculation was performed to examine the hydrogen storage potential in MOF-5. The geometry optimizations were carried out using the B3LYP functional together with the LanL2DZ/6-31G basis set. It is observed that the adsorption of hydrogen in MOF-5 cluster is physisorption and the hydrogen molecule is held in the core with the binding energy in the range 26-27 meV.