Back-off action selection in summary space-based POMDP dialogue systems

Milica Gasic, F. Lefèvre, Filip Jurcícek, Simon Keizer, François Mairesse, Blaise Thomson, Kai Yu, S. Young
{"title":"Back-off action selection in summary space-based POMDP dialogue systems","authors":"Milica Gasic, F. Lefèvre, Filip Jurcícek, Simon Keizer, François Mairesse, Blaise Thomson, Kai Yu, S. Young","doi":"10.1109/ASRU.2009.5373416","DOIUrl":null,"url":null,"abstract":"This paper deals with the issue of invalid state-action pairs in the Partially Observable Markov Decision Process (POMDP) framework, with a focus on real-world tasks where the need for approximate solutions exacerbates this problem. In particular, when modelling dialogue as a POMDP, both the state and the action space must be reduced to smaller scale summary spaces in order to make learning tractable. However, since not all actions are valid in all states, the action proposed by the policy in summary space sometimes leads to an invalid action when mapped back to master space. Some form of back-off scheme must then be used to generate an alternative action. This paper demonstrates how the value function derived during reinforcement learning can be used to order back-off actions in an N-best list. Compared to a simple baseline back-off strategy and to a strategy that extends the summary space to minimise the occurrence of invalid actions, the proposed N-best action selection scheme is shown to be significantly more robust.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper deals with the issue of invalid state-action pairs in the Partially Observable Markov Decision Process (POMDP) framework, with a focus on real-world tasks where the need for approximate solutions exacerbates this problem. In particular, when modelling dialogue as a POMDP, both the state and the action space must be reduced to smaller scale summary spaces in order to make learning tractable. However, since not all actions are valid in all states, the action proposed by the policy in summary space sometimes leads to an invalid action when mapped back to master space. Some form of back-off scheme must then be used to generate an alternative action. This paper demonstrates how the value function derived during reinforcement learning can be used to order back-off actions in an N-best list. Compared to a simple baseline back-off strategy and to a strategy that extends the summary space to minimise the occurrence of invalid actions, the proposed N-best action selection scheme is shown to be significantly more robust.
基于空间的POMDP对话系统中的后退操作选择
本文讨论了部分可观察马尔可夫决策过程(POMDP)框架中无效状态-动作对的问题,重点关注了对近似解的需求加剧了这一问题的现实世界任务。特别是,当将对话建模为POMDP时,为了使学习易于处理,状态和动作空间都必须缩减为较小规模的总结空间。然而,由于并非所有操作在所有状态下都有效,因此策略在摘要空间中提出的操作有时会在映射回主空间时导致无效操作。然后必须使用某种形式的退让方案来生成替代操作。本文演示了在强化学习过程中推导的值函数如何用于排序n -最佳列表中的退退动作。与简单的基线后退策略和扩展汇总空间以最小化无效动作发生的策略相比,所提出的n -最佳动作选择方案显着更具鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信