Succinct Trit-array Trie for Scalable Trajectory Similarity Search

Shunsuke Kanda, Koh Takeuchi, Keisuke Fujii, Yasuo Tabei
{"title":"Succinct Trit-array Trie for Scalable Trajectory Similarity Search","authors":"Shunsuke Kanda, Koh Takeuchi, Keisuke Fujii, Yasuo Tabei","doi":"10.1145/3397536.3422210","DOIUrl":null,"url":null,"abstract":"Massive datasets of spatial trajectories representing the mobility of a diversity of moving objects are ubiquitous in research and industry. Similarity search of a large collection of trajectories is indispensable for turning these datasets into knowledge. Locality sensitive hashing (LSH) is a powerful technique for fast similarity searches. Recent methods employ LSH and attempt to realize an efficient similarity search of trajectories; however, those methods are inefficient in terms of search time and memory when applied to massive datasets. To address this problem, we present the trajectory-indexing succinct trit-array trie (tSTAT), which is a scalable method leveraging LSH for trajectory similarity searches. tSTAT quickly performs the search on a tree data structure called trie. We also present two novel techniques that enable to dramatically enhance the memory efficiency of tSTAT. One is a node reduction technique that substantially omits redundant trie nodes while maintaining the time performance. The other is a space-efficient representation that leverages the idea behind succinct data structures (i.e., a compressed data structure supporting fast data operations). We experimentally test tSTAT on its ability to retrieve similar trajectories for a query from large collections of trajectories and show that tSTAT performs superiorly in comparison to state-of-the-art similarity search methods.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Massive datasets of spatial trajectories representing the mobility of a diversity of moving objects are ubiquitous in research and industry. Similarity search of a large collection of trajectories is indispensable for turning these datasets into knowledge. Locality sensitive hashing (LSH) is a powerful technique for fast similarity searches. Recent methods employ LSH and attempt to realize an efficient similarity search of trajectories; however, those methods are inefficient in terms of search time and memory when applied to massive datasets. To address this problem, we present the trajectory-indexing succinct trit-array trie (tSTAT), which is a scalable method leveraging LSH for trajectory similarity searches. tSTAT quickly performs the search on a tree data structure called trie. We also present two novel techniques that enable to dramatically enhance the memory efficiency of tSTAT. One is a node reduction technique that substantially omits redundant trie nodes while maintaining the time performance. The other is a space-efficient representation that leverages the idea behind succinct data structures (i.e., a compressed data structure supporting fast data operations). We experimentally test tSTAT on its ability to retrieve similar trajectories for a query from large collections of trajectories and show that tSTAT performs superiorly in comparison to state-of-the-art similarity search methods.
用于可扩展轨迹相似度搜索的简洁三列矩阵
在研究和工业中,代表各种运动物体的移动性的空间轨迹的海量数据集无处不在。对大量轨迹集进行相似性搜索是将这些数据集转化为知识的必要条件。局部敏感散列(LSH)是一种强大的快速相似性搜索技术。最近的方法采用LSH,并试图实现轨迹的高效相似搜索;然而,当应用于海量数据集时,这些方法在搜索时间和内存方面效率低下。为了解决这个问题,我们提出了轨迹索引简洁三数组trit (tSTAT),这是一种利用LSH进行轨迹相似性搜索的可扩展方法。tSTAT在一个名为trie的树状数据结构上快速执行搜索。我们还提出了两种能够显著提高tSTAT内存效率的新技术。一种是节点缩减技术,它在保持时间性能的同时大大省略了冗余的三节点。另一种是利用简洁数据结构(即支持快速数据操作的压缩数据结构)背后的思想的空间高效表示。我们通过实验测试了tSTAT从大量轨迹集合中检索相似轨迹的能力,并表明与最先进的相似性搜索方法相比,tSTAT的性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信