{"title":"Secure 3G user authentication in adhoc serving networks","authors":"A. Durresi, Lyn Evans, V. Paruchuri, L. Barolli","doi":"10.1109/ARES.2006.119","DOIUrl":null,"url":null,"abstract":"The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. Gaining secure access to 3G services from 802.11 WLANs is a primary challenge for this new integrated wireless technology. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user's authentication challenge with spatial data defining his visited WLAN. With limited capacity to determine a user's location only to within a current cell and restrictions on accessing users' location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement spatial authentication control. A potential risk is presented to 3G operators since no prior relationship or trust may exist with a WLAN owner. Algorithms to quantify the trust between all parties of 3G-WLAN integrated networks are presented to further secure user authentication. Ad-hoc serving networks and the trust relationships established between mobile users are explored to define stronger algorithms for 3G-WLAN user authentication.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. Gaining secure access to 3G services from 802.11 WLANs is a primary challenge for this new integrated wireless technology. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user's authentication challenge with spatial data defining his visited WLAN. With limited capacity to determine a user's location only to within a current cell and restrictions on accessing users' location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement spatial authentication control. A potential risk is presented to 3G operators since no prior relationship or trust may exist with a WLAN owner. Algorithms to quantify the trust between all parties of 3G-WLAN integrated networks are presented to further secure user authentication. Ad-hoc serving networks and the trust relationships established between mobile users are explored to define stronger algorithms for 3G-WLAN user authentication.