Input-output mapping performance of linear and nonlinear models for estimating hand trajectories from cortical neuronal firing patterns

Justin C. Sanchez, Sung-Phil Kim, Deniz Erdoğmuş, Y. Rao, J. Príncipe, J. Wessberg, M. Nicolelis
{"title":"Input-output mapping performance of linear and nonlinear models for estimating hand trajectories from cortical neuronal firing patterns","authors":"Justin C. Sanchez, Sung-Phil Kim, Deniz Erdoğmuş, Y. Rao, J. Príncipe, J. Wessberg, M. Nicolelis","doi":"10.1109/NNSP.2002.1030025","DOIUrl":null,"url":null,"abstract":"Linear and nonlinear (TDNN) models have been shown to estimate hand position using populations of action potentials collected in the pre-motor and motor cortical areas of a primate's brain. One of the applications of this discovery is to restore movement in patients suffering from paralysis. For real-time implementation of this technology, reliable and accurate signal processing models that produce small error variance in the estimated positions are required. In this paper, we compare the mapping performance of the FIR filter, gamma filter and recurrent neural network (RNN) in the peaks of reaching movements. Each approach has strengths and weaknesses that are compared experimentally. The RNN approach shows very accurate peak position estimations with small error variance.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Linear and nonlinear (TDNN) models have been shown to estimate hand position using populations of action potentials collected in the pre-motor and motor cortical areas of a primate's brain. One of the applications of this discovery is to restore movement in patients suffering from paralysis. For real-time implementation of this technology, reliable and accurate signal processing models that produce small error variance in the estimated positions are required. In this paper, we compare the mapping performance of the FIR filter, gamma filter and recurrent neural network (RNN) in the peaks of reaching movements. Each approach has strengths and weaknesses that are compared experimentally. The RNN approach shows very accurate peak position estimations with small error variance.
从皮质神经元放电模式估计手部运动轨迹的线性和非线性模型的输入-输出映射性能
线性和非线性(TDNN)模型已被证明可以利用灵长类动物大脑运动前和运动皮质区收集的动作电位种群来估计手的位置。这一发现的应用之一是恢复瘫痪病人的运动能力。为了实时实现该技术,需要可靠、准确的信号处理模型,使其在估计位置上产生较小的误差方差。在本文中,我们比较了FIR滤波器,伽玛滤波器和递归神经网络(RNN)在到达运动峰值的映射性能。每种方法都有各自的优点和缺点,并通过实验进行了比较。RNN方法显示出非常精确的峰值位置估计,误差方差很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信