Fault diagnosis of natural gas compressor based on EEMD and Hilbert marginal spectrum

Jinshan Lin
{"title":"Fault diagnosis of natural gas compressor based on EEMD and Hilbert marginal spectrum","authors":"Jinshan Lin","doi":"10.1109/ICISE.2010.5689120","DOIUrl":null,"url":null,"abstract":"The paper utilizes ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for the fault diagnosis of the reciprocating compressor on the offshore platform of WZ12-1, aiming at the non-stationary and nonlinear characteristics of vibration signals collected from the faulty compressor. First, the EEMD algorithm self-adaptively anti-aliasing decomposes the vibration signal into a set of intrinsic mode function of different frequency bands. Then, the Hilbert marginal spectrum with some advantages in frequency resolution is used to extract the fault feature. Next, the proposed method succeeds in diagnosing the fault of the reciprocating compressor. The results show that the proposed method is feasible.","PeriodicalId":206435,"journal":{"name":"The 2nd International Conference on Information Science and Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Information Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISE.2010.5689120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper utilizes ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for the fault diagnosis of the reciprocating compressor on the offshore platform of WZ12-1, aiming at the non-stationary and nonlinear characteristics of vibration signals collected from the faulty compressor. First, the EEMD algorithm self-adaptively anti-aliasing decomposes the vibration signal into a set of intrinsic mode function of different frequency bands. Then, the Hilbert marginal spectrum with some advantages in frequency resolution is used to extract the fault feature. Next, the proposed method succeeds in diagnosing the fault of the reciprocating compressor. The results show that the proposed method is feasible.
基于EEMD和Hilbert边际谱的天然气压缩机故障诊断
针对WZ12-1海上平台往复压缩机振动信号的非平稳、非线性特点,采用集合经验模态分解(EEMD)和Hilbert边际谱进行故障诊断。首先,EEMD算法自适应抗混叠,将振动信号分解为一组不同频带的本征模态函数;然后,利用在频率分辨率上具有一定优势的希尔伯特边际谱提取故障特征;其次,该方法在往复压缩机故障诊断中取得了成功。结果表明,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信