Algorithms for Finite Field Arithmetic

É. Schost
{"title":"Algorithms for Finite Field Arithmetic","authors":"É. Schost","doi":"10.1145/2755996.2756637","DOIUrl":null,"url":null,"abstract":"We review several algorithms to construct finite fields and perform operations such as field embedding. Following previous work by notably Shoup, de Smit and Lenstra or Couveignes and Lercier, as well as results obtained with De Feo and Doliskani, we distinguish between algorithms that build \"towers\" of finite fields, with degrees of the form l, l2, l3,... and algorithms for composita. We show in particular how techniques that originate from algorithms for computing with triangular sets can be useful in such a context.","PeriodicalId":182805,"journal":{"name":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2755996.2756637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We review several algorithms to construct finite fields and perform operations such as field embedding. Following previous work by notably Shoup, de Smit and Lenstra or Couveignes and Lercier, as well as results obtained with De Feo and Doliskani, we distinguish between algorithms that build "towers" of finite fields, with degrees of the form l, l2, l3,... and algorithms for composita. We show in particular how techniques that originate from algorithms for computing with triangular sets can be useful in such a context.
有限域算法
我们回顾了几种构造有限域和执行域嵌入等操作的算法。继Shoup, de Smit和Lenstra或Couveignes和Lercier之前的工作之后,以及de Feo和Doliskani获得的结果,我们区分了构建有限域“塔”的算法,其程度形式为l, l2, l3,…还有合成的算法。我们特别展示了源自三角集计算算法的技术如何在这种情况下非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信