Experimental Study of Evaporation Frictional Pressure Drop in Horizontal Enhanced Tube

Zong-bao Gu, Yu Guo, Xiang Ma, Yan He, Wei Li
{"title":"Experimental Study of Evaporation Frictional Pressure Drop in Horizontal Enhanced Tube","authors":"Zong-bao Gu, Yu Guo, Xiang Ma, Yan He, Wei Li","doi":"10.1115/fedsm2020-20134","DOIUrl":null,"url":null,"abstract":"An experimental investigation for evaporation frictional pressure drop in horizontal enhanced tubes with an outer diameter of 12.7 mm was studied using R410A as the working fluid. The experiment was conducted: the mass flux in the range of 100 kg/(m2s) to 200 kg/(m2s), over a vapor quality range of 0.2 to 0.8, an average saturation temperature at 279 K. The inner tubes were the tested tubes, which included a smooth tube, a three-dimensional enhanced tube (a tube enhanced by protrusions and petal arrays background patterns), respectively. The results show that the frictional pressure drop increases with the mass flux increasing. Moreover, the frictional pressure drop of the enhanced tube is 1.6∼2.4 times than that of the smooth tube. This is mainly due to the increase of the flow resistance inside the enhanced tube, which is caused by the increased interfacial turbulence, flow separation and secondary flow. It is also observed that the pressure drop increases with vapor quality increasing. In addition, some existing correlations are used to compare with our experimental data and verify their accuracy. A new modified correlation is proposed to predict the frictional pressure drop of EHT-1 tube.","PeriodicalId":103887,"journal":{"name":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental investigation for evaporation frictional pressure drop in horizontal enhanced tubes with an outer diameter of 12.7 mm was studied using R410A as the working fluid. The experiment was conducted: the mass flux in the range of 100 kg/(m2s) to 200 kg/(m2s), over a vapor quality range of 0.2 to 0.8, an average saturation temperature at 279 K. The inner tubes were the tested tubes, which included a smooth tube, a three-dimensional enhanced tube (a tube enhanced by protrusions and petal arrays background patterns), respectively. The results show that the frictional pressure drop increases with the mass flux increasing. Moreover, the frictional pressure drop of the enhanced tube is 1.6∼2.4 times than that of the smooth tube. This is mainly due to the increase of the flow resistance inside the enhanced tube, which is caused by the increased interfacial turbulence, flow separation and secondary flow. It is also observed that the pressure drop increases with vapor quality increasing. In addition, some existing correlations are used to compare with our experimental data and verify their accuracy. A new modified correlation is proposed to predict the frictional pressure drop of EHT-1 tube.
实验结果表明:质量通量在100 kg/(m2s) ~ 200 kg/(m2s)范围内,蒸气质量在0.2 ~ 0.8范围内,平均饱和温度在279 K。内管是测试管,分别包括光滑管和三维增强管(由突起和花瓣阵列背景图案增强的管)。结果表明,摩擦压降随质量流量的增大而增大。强化管的摩擦压降是光滑管的1.6 ~ 2.4倍。这主要是由于增强管内部流动阻力的增加,这是由界面湍流、流动分离和二次流的增加引起的。压降随蒸汽质量的增加而增大。此外,利用已有的相关关系与实验数据进行对比,验证其准确性。提出了一种新的修正关系式来预测EHT-1管的摩擦压降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信