Stochastic Gradient Coding for Flexible Straggler Mitigation in Distributed Learning

Rawad Bitar, Mary Wootters, S. Rouayheb
{"title":"Stochastic Gradient Coding for Flexible Straggler Mitigation in Distributed Learning","authors":"Rawad Bitar, Mary Wootters, S. Rouayheb","doi":"10.1109/ITW44776.2019.8989328","DOIUrl":null,"url":null,"abstract":"We consider distributed gradient descent in the presence of stragglers. Recent work on gradient coding and approximate gradient coding have shown how to add redundancy in distributed gradient descent to guarantee convergence even if some workers are slow or non-responsive. In this work we propose a new type of approximate gradient coding which we call Stochastic Gradient Coding (SGC). The idea of SGC is very simple: we distribute data points redundantly to workers according to a good combinatorial design. We prove that the convergence rate of SGC mirrors that of batched Stochastic Gradient Descent (SGD) for the $l_{2}$ loss function, and show how the convergence rate can improve with the redundancy. We show empirically that SGC requires a small amount of redundancy to handle a large number of stragglers and that it can outperform existing approximate gradient codes when the number of stragglers is large.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We consider distributed gradient descent in the presence of stragglers. Recent work on gradient coding and approximate gradient coding have shown how to add redundancy in distributed gradient descent to guarantee convergence even if some workers are slow or non-responsive. In this work we propose a new type of approximate gradient coding which we call Stochastic Gradient Coding (SGC). The idea of SGC is very simple: we distribute data points redundantly to workers according to a good combinatorial design. We prove that the convergence rate of SGC mirrors that of batched Stochastic Gradient Descent (SGD) for the $l_{2}$ loss function, and show how the convergence rate can improve with the redundancy. We show empirically that SGC requires a small amount of redundancy to handle a large number of stragglers and that it can outperform existing approximate gradient codes when the number of stragglers is large.
基于随机梯度编码的分布式学习中柔性离散子抑制
我们考虑离散体存在时的分布梯度下降。最近关于梯度编码和近似梯度编码的研究表明,如何在分布式梯度下降中增加冗余以保证收敛,即使某些工作缓慢或无响应。在本文中,我们提出了一种新的近似梯度编码,我们称之为随机梯度编码(SGC)。SGC的思想非常简单:我们根据良好的组合设计将数据点冗余地分发给工人。我们证明了对于$l_{2}$损失函数,SGC的收敛速度与批处理随机梯度下降(SGD)的收敛速度是一致的,并说明了收敛速度如何随着冗余度的增加而提高。我们的经验表明,SGC需要少量的冗余来处理大量的离散子,并且当离散子数量很大时,它可以优于现有的近似梯度码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信