A. Guerra-Hernández, G. Ortiz-Hernández, W. A. Luna-Ramírez
{"title":"Jason Smiles: Incremental BDI MAS Learning","authors":"A. Guerra-Hernández, G. Ortiz-Hernández, W. A. Luna-Ramírez","doi":"10.1109/MICAI.2007.16","DOIUrl":null,"url":null,"abstract":"This work deals with the problem of intentional learning in a multi-agent system (MAS). Smile (sound multi-agent incremental learning), a collaborative learning protocol which shows interesting results in the distributed learning of well known complex boolean formulae, is adopted here by a MAS of BDI agents to update their practical reasons while keeping MAS-consistency. An incremental algorithm for first-order induction of logical decision trees enables the BDI agents to adopt Smile, reducing the amount of communicated learning examples when compared to our previous non-incremental approaches to intentional learning. The protocol is formalized extending the operational semantics of AgentSpeak(L), and implemented in Jason, its well known Java-based extended interpreter.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This work deals with the problem of intentional learning in a multi-agent system (MAS). Smile (sound multi-agent incremental learning), a collaborative learning protocol which shows interesting results in the distributed learning of well known complex boolean formulae, is adopted here by a MAS of BDI agents to update their practical reasons while keeping MAS-consistency. An incremental algorithm for first-order induction of logical decision trees enables the BDI agents to adopt Smile, reducing the amount of communicated learning examples when compared to our previous non-incremental approaches to intentional learning. The protocol is formalized extending the operational semantics of AgentSpeak(L), and implemented in Jason, its well known Java-based extended interpreter.