A Reconfigurable Inference Processor for Recurrent Neural Networks Based on Programmable Data Format in a Resource-Limited FPGA

Jiho Kim, Kwoanyoung Park, Tae-Hwan Kim
{"title":"A Reconfigurable Inference Processor for Recurrent Neural Networks Based on Programmable Data Format in a Resource-Limited FPGA","authors":"Jiho Kim, Kwoanyoung Park, Tae-Hwan Kim","doi":"10.1109/ASP-DAC52403.2022.9712510","DOIUrl":null,"url":null,"abstract":"An efficient inference processor for recurrent neural networks is designed and implemented in an FPGA. The proposed processor is designed to be reconfigurable for various models and perform every vector operation consistently utilizing a single array of multiply-accumulate units with the aim of achieving a high resource efficiency. The data format is programmable per operand. The resource and energy efficiency are 1.89MOP/LUT and 263.95GOP/J, respectively, in Intel Cyclone-V FPGA. The functionality has been verified successfully under a fully-integrated inference system.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An efficient inference processor for recurrent neural networks is designed and implemented in an FPGA. The proposed processor is designed to be reconfigurable for various models and perform every vector operation consistently utilizing a single array of multiply-accumulate units with the aim of achieving a high resource efficiency. The data format is programmable per operand. The resource and energy efficiency are 1.89MOP/LUT and 263.95GOP/J, respectively, in Intel Cyclone-V FPGA. The functionality has been verified successfully under a fully-integrated inference system.
基于可编程数据格式的可重构递归神经网络推理处理器
设计并实现了一种高效的递归神经网络推理处理器。所提出的处理器被设计为可重构的各种模型,并执行每一个矢量操作一致地利用单一阵列的乘累积单元,以实现高资源效率的目标。数据格式是每个操作数可编程的。Intel Cyclone-V FPGA的资源效率和能源效率分别为1.89MOP/LUT和263.95GOP/J。该功能已在一个完全集成的推理系统下成功验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信